Abstract:
A system and method for removing post-etch polymer residue from a surface of a substrate includes identifying a dry flash chemistry for removing the post-etch polymer residue from the surface of the substrate. The dry flash chemistry is configured to selectively remove the post-etch polymer residue left behind by an etch operation in a region where a feature was formed through a low-k dielectric film layer. The identified dry flash chemistry is applied using a short flash process to remove at least a portion of the post-etch polymer residue while minimizing the damage to the dielectric film layer. A wet cleaning chemistry is then applied to the surface of the substrate. The application of the wet cleaning chemistry aids in substantially removing the remaining post-etch polymer residue left behind by the short flash process.
Abstract:
A method for removing post-processing residues in a single wafer cleaning system is provided. The method initiates with providing a first heated fluid to a proximity head disposed over a substrate. Then, a meniscus of the first fluid is generated between a surface of the substrate and an opposing surface of the proximity head. The substrate is linearly moved under the proximity head. A single wafer cleaning system is also provided.
Abstract:
A method and apparatus for drying semiconductor wafers uses hot isopropyl alcohol in liquid form at temperatures above 60°C and below 82°C. The use of hot IPA better avoids pattern collapse and permits reduced consumption of IPA. The wafer temperature can be maintained by applying hot deionized water to the opposite wafer sideand by evaporating the hot IPA from the wafer surface using heated nitrogen gas.
Abstract:
A method is provided for treating the surface of high aspect ratio nanostructures to help protect the delicate nanostructures during some of the rigorous processing involved in fabrication of semiconductor devices. A wafer containing high aspect ratio nanostructures is treated to make the surfaces of the nanostructures more hydrophobic. The treatment may include the application of a primer that chemically alters the surfaces of the nanostructures preventing them from getting damaged during subsequent wet clean processes.. The wafer may then be further processed, for example a wet cleaning process followed by a drying process. The increased hydrophobicity of the nanostructures helps to reduce or prevent collapse of the nanostructures.
Abstract:
Apparatus and methods for removing particle contaminants from a surface of a substrate includes coating a layer of a viscoelastic material on the surface. The viscoelastic material is coated as a thin film and exhibits substantial liquid-like characteristic. An external force is applied to a first area of the surface coated with the viscoelastic material such that a second area of the surface coated with the viscoelastic material is not substantially subjected to the applied force. The force is applied for a time duration that is shorter than a intrinsic time of the viscoelastic material so as to access solid-like characteristic of the viscoelastic material. The viscoelastic material exhibiting solid-like characteristic interacts at least partially with at least some of the particle contaminants present on the surface. The viscoelastic material along with at least some of the particle contaminants is removed from the first area of the surface while the viscoelastic material is exhibiting solid-like characteristics.
Abstract:
A method and system for cleaning a surface of a substrate after an etching operation includes determining a plurality of process parameters associated with the surface of the substrate. The process parameters define characteristics related to the surface of the substrate such as characteristics of the substrate surface to be cleaned, contaminants to be removed, features formed on the substrate and chemicals used in the fabrication operations. A plurality of application chemistries are identified based on the process parameters. The plurality of application chemistries includes a first application chemistry as an emulsion having a first immiscible liquid combined with a second immiscible liquid and solid particles distributed within the first immiscible liquid. The plurality of application chemistries including the first application chemistry are applied to the surface of the substrate such that the combined chemistries enhance the cleaning process by substantially removing the particulate and polymer residue contaminants from the surface of the substrate while preserving the characteristics of the features and of the low-k dielectric material through which the features are formed.
Abstract:
A method for cleaning the surface of a semiconductor wafer is disclosed. A first cleaning solution is applied to the wafer surface to remove contaminants on the wafer surface. The first cleaning solution is removed with some of the contaminants on the wafer surface. Next, an oxidizer solution is applied to the wafer surface. The oxidizer solution forms an oxidized layer on remaining contaminants. The oxidizer solution is removed and then a second cleaning solution is applied to the wafer surface. The second cleaning solution is removed from the wafer surface. The cleaning solution is configured to substantially remove the oxidized layer along with the remaining contaminants.
Abstract:
A system and method for removing post-etch polymer residue from a surface of a substrate includes identifying a dry flash chemistry for removing the post-etch polymer residue from the surface of the substrate. The dry flash chemistry is configured to selectively remove the post-etch polymer residue left behind by an etch operation in a region where a feature was formed through a low-k dielectric film layer. The identified dry flash chemistry is applied using a short flash process to remove at least a portion of the post-etch polymer residue while minimizing the damage to the dielectric film layer. A wet cleaning chemistry is then applied to the surface of the substrate. The application of the wet cleaning chemistry aids in substantially removing the remaining post-etch polymer residue left behind by the short flash process.(Figure 2A)