Abstract:
A heater chip that includes a circuit element, and a bus that can be used to power the circuit element. The heater chip also includes a feedback circuit that is coupled to the power bus. Particularly, the feedback circuit can be configured to indicate if the bus is powered the circuit element.
Abstract:
An ink jet printer including a printer cartridge containing a printhead attached to a cartridge carriage for translation of the cartridge across a print media. The printer also includes an off carriage ink supply, a printer microprocessor, and a combined ink fill tube and electrical connection cable connected between the cartridge and the off carriage ink supply for providing refill ink to the ink cartridge and control of the carriage and printhead. Improvements to the printer enable low cost, high quality printing to be achieved.
Abstract:
Printheads configured to operate in accordance with a plurality of print modes. For example, one of the plurality of print modes can be selected in accordance with a bit of address data received by the printhead. In an exemplary embodiment, the selection of print mode can be accomplished by switching one or more actuator (e.g., heater) circuit addresses on the printhead.
Abstract:
Test circuits on heater chips for testing a heater circuit having a heater element and a first power device. The test circuit can include a second power device, a test device configured to hold the first power device off and the second power device on for a selected heater circuit when the test device receives a signal to activate the test circuit, and a common test output to transmit a signal indicative of a state of the selected heater circuit. Methods for using the same are also provided.
Abstract:
A semiconductor substrate for a micro-fluid ejection head. The substrate includes a plurality of fluid ejection actuators disposed on the substrate. Each of the fluid ejection actuators includes a thin heater stack comprising a thin film heater and one or more protective layers adjacent the heater. The thin film heater is made of a tantalum-aluminum-nitride thin film material having a nano-crystalline structure consisting essentially of A1N, TaN, and TaA1 alloys, and has a sheet resistance ranging from about 30 to about 100 ohms per square. The thin film material contains from about 30 to about 70 atomic% tantalum, from about 10 to about 40 atomic% aluminum and from about 5 to about 30 atomic% nitrogen.
Abstract:
An ejector chip (e.g., a heater chip) has at least one fluid (e.g., ink) via, and an elongated actuator (e.g., a resistive heating element) between an edge of the chip and the via. The chip also has a conductive trace connected to the actuator. The chip also has a bondpad central to the length of the actuator to reduce a length of the conductive trace.
Abstract:
A semiconductor substrate for a micro-fluid ejecting device. The semiconductor substrate includes a plurality of fluid ejection devices disposed on the substrate. A plurality of driver transistors are disposed on the substrate for driving the plurality of fluid ejection devices. A programmable memory matrix containing embedded programmable memory devices is operatively connected to the micro-fluid ejecting device for collecting and storing information on the semiconductor substrate for operation of the micro-fluid ejecting device. The programmable memory matrix provides a high density of memory bits embedded on the substrate for storing information about the micro-fluid ejecting device.
Abstract:
An inkjet printhead. The inkjet printhead includes a temperature-sensing resistor with a low voltage end which is connected to a ground structure that at least partially encloses the temperature sensing resistor.
Abstract:
Some embodiments of the present invention provide an inkjet print head having a housing defining an ink reservoir, a nozzle portion including a nozzle plate defining an ink chamber in fluid communication with the ink reservoir, and forming a fluid flow path between the ink chamber and the ink reservoir, and a substrate coupled to the nozzle plate and having a surface substantially positioned over the nozzle plate. At least one heating element can be coupled to the substrate, and can be positioned adjacent the surface to heat a portion of the ink chamber. In some embodiments, the inkjet print head comprises a control circuit coupled to the at least one heating element for controlling the heating element, and a temperature sense element positioned substantially between the at least one heating element and the control circuit or in at least partially overlapping relationship with the heating element.
Abstract:
A semiconductor substrate for a micro-fluid ejecting device. The semiconductor substrate includes a plurality of fluid ejection devices disposed on the substrate. A plurality of driver transistors are disposed on the substrate for driving the plurality of fluid ejection devices. A programmable memory matrix containing embedded programmable memory devices is operatively connected to the micro-fluid ejecting device for collecting and storing information on the semiconductor substrate for operation of the micro-fluid ejecting device. The programmable memory matrix provides a high density of memory bits embedded on the substrate for storing information about the micro-fluid ejecting device.