Abstract:
The invention involves providing a microstructured fiber having a core region, a cladding region, and one or more axially oriented elements (e.g., capillary air holes) in the cladding region. A portion of the microstructured fiber is then treated, e.g., by heating and stretching the fiber, such that at least one feature of the fiber microstructure is modified along the propagation direction, e.g., the outer diameter of the fiber gets smaller, the axially oriented elements get smaller, or the axially oriented elements collapse. The treatment is selected to provide a resultant fiber length that exhibits particular properties, e.g., mode contraction leading to soliton generation, or mode expansion. Advantageously, the overall fiber length is designed to readily couple to a standard transmission fiber, i.e., the core sizes at the ends of the length are similar to a standard fiber, which allows efficient coupling of light into the microstructured fiber length.
Abstract:
Semiconductor devices are imaged using two-photon absorption. The method is similar to conventional optical beam induced imaging except that the light beams used have frequencies (f 2 ) (photon energies hf 2 ) insufficient to excite electrons across the semiconductor bandgap (30). Rather the instantaneous intensity of the lower frequency light is increased, as by using a pulsed laser source, so that electron transitions occur by two-photon absorption (35,36) predominately in the localized region where the beam is focused. The result is minimal absorption during passage through the substrate and maximal absorption in the component-rich active layer where the beam is focused. This enhances imaging of fine-detail semiconductor devices. Specifically, the quadratic dependence of free carrier generation on the excitation intensity both enhances the resolution and provides a three-dimensional sectioning capability.
Abstract:
In a time-division-multiplex system, a relatively high-rate optical signal stream comprising multiple interleaved signal sequences is applied to one end of an elongated waveguide that includes multiple photodetectors disposed along the longitudinal extent of the waveguide. Probe pulses at a relatively low rate are applied to the other end of the waveguide in a synchronized fashion to cause two-photon non-linear absorption in successive respective photodetectors as each propagating probe pulse overlaps successive different signals of each sequence. In that way, electrical output signals are provided from each photodetector at the relatively low probe-pulse rate.
Abstract:
Semiconductor devices are imaged using two-photon absorption. The method is similar to conventional optical beam induced imaging except that the light beams used have frequencies (f 2 ) (photon energies hf 2 ) insufficient to excite electrons across the semiconductor bandgap (30). Rather the instantaneous intensity of the lower frequency light is increased, as by using a pulsed laser source, so that electron transitions occur by two-photon absorption (35,36) predominately in the localized region where the beam is focused. The result is minimal absorption during passage through the substrate and maximal absorption in the component-rich active layer where the beam is focused. This enhances imaging of fine-detail semiconductor devices. Specifically, the quadratic dependence of free carrier generation on the excitation intensity both enhances the resolution and provides a three-dimensional sectioning capability.
Abstract:
In a time-division-multiplex system, a relatively high-rate optical signal stream comprising multiple interleaved signal sequences is applied to one end of an elongated waveguide that includes multiple photodetectors disposed along the longitudinal extent of the waveguide. Probe pulses at a relatively low rate are applied to the other end of the waveguide in a synchronized fashion to cause two-photon non-linear absorption in successive respective photodetectors as each propagating probe pulse overlaps successive different signals of each sequence. In that way, electrical output signals are provided from each photodetector at the relatively low probe-pulse rate.