Abstract:
Transducer (10) apparatus and method combining both an absolute pressure sensor (20) for sensing absolute pressure in the load lock chamber (60) and a differential pressure sensor (30) for sensing a pressure difference between ambient atmospheric pressure and pressure in a load lock chamber (60) and provides control signals for opening an interior door (62) from the load lock chamber (60) into a vacuum processing chamber (70) and for opening an exterior door (64) between ambient atmosphere and the load lock chamber (60). The transducer (10) can also produce signals to control transition from slow to fast vacuum pump-down of load lock chamber (60) pressure at a predetermined pressure set point.
Abstract:
The present invention provides a vapor delivery system and a method for efficiently producing water vapor on demand. More particularly, the present invention produces low-temperature water vapor, without the formation of ice, by maintaining a sufficient volume of water at a sufficient temperature within a vaporizer chamber when the pressure in the vaporizer chamber is lowered.
Abstract:
Trap apparatus (10) and method for removing contaminants (142) from the gaseous effluent flows (136) from chemical vapor deposition chambers (20) and processes by flowing the particle laden gas (140) into an upper chamber (90) of the trap apparatus, (10) imparting additional kinetic energy to the powder particles (142) to enhance separation of the powder particles (142) from the gas (140), and then flowing the gas (152), sans the powder particles (142), out of the trap (10), while the powder particles (142) fall into and are captured by a lower chamber (92) positioned below the upper chamber (90) and remote from the flowing gas (152). An impeller (120) positioned in the upper chamber (90) in the inlet path (140) imparts the additional kinetic energy. For some reaction gas systems, an optional reactor with hydrophillic, rotating growth substrates enhance and accelerate growth of solid particles, which are then dislodged from the media, and fed by the flowing gas (148) into the upper chamber (90) for capture as previously described.
Abstract:
A pirani absolute pressure sensor for sensing absolute pressure in a load lock in a range from 100 to 10 -4 torr and a differential pressure sensor for sensing a pressure difference between ambient atmospheric pressure and pressure in the load lock chamber are combined together in a module with a manifold and common circuit components to provide a pressure transducer that is capable of producing not only analog output for absolute pressure measurements, but also control signals at settable absolute and differential pressure values for opening interior and exterior doors of a load lock used to shuttle wafers and other devices into and out of a vacuum processing chamber. The transducer can also produce signals to control transition from slow to fast vacuum pumping of the load lock chamber at a settable threshold pressure.
Abstract:
The present invention provides a vapor delivery system and method for efficiently producing water vapor on demand. More particularly, the present invention produces low-temperature water vapor, without the formation of ice, by maintaining a sufficient volume of water at a sufficient temperature within a vaporizer chamber when the pressure in the vaporizer chamber is lowered.
Abstract:
The present invention provides a vapor delivery system and method for efficiently producing water vapor on demand. More particularly, the present invention produces low-temperature water vapor, without the formation of ice, by maintaining a sufficient volume of water at a sufficient temperature within a vaporizer chamber when the pressure in the vaporizer chamber is lowered.
Abstract:
Trap apparatus and method for removing contaminants from the gaseous effluent flows from chemical vapor deposition chambers and processes by flowing the particle laden gas into an upper chamber of the trap apparatus, imparting additional kinetic energy to the powder particles to enhance separation of the powder particles from the gas, and then flowing the gas, sans the powder particles, out of the trap, while the powder particles fall into and are captured by a lower chamber positioned below the upper chamber and remote from the flowing gas. An impeller positioned in the upper chamber in the inlet path imparts the additional kinetic energy. For some reaction gas systems, an optional reactor with hydrophillic, rotating growth substrates enhance and accelerate growth of solid particles, which are then dislodged from the media, and fed by the flowing gas into the upper chamber for capture as previously described.