Abstract:
A probe module, which supports loopback test and is provided between a PCB and a DUT, includes an adapter, two probes, two inductive components provided at the adapter, and a capacitive component. The adapter has two connecting circuits. An end of each of the probes is connected to one of the connecting circuits, while another end thereof, which is a tip, contacts the DUT. Each of the inductive components has an end electrically connected to one of the connecting circuits, and another end electrically connected to the PCB through a conductive member, which is provided at the adapter, wherein two ends of the capacitive component are electrically connected to one of the connecting circuits, respectively. Whereby, the signal paths are changed by the differences between frequencies of signals, and the transmission path of high-frequency signals is effectively shortened.
Abstract:
A multilayer circuit board includes a first substrate and a second substrate in stack. The first substrate is provided with two first pads, two second pads, and two first sub-circuits. The first pads and the second pads are electrically connected to the first sub-circuits. The second substrate has a top surface, a bottom surface, a lateral edge, and two openings. The bottom surface of the second substrate is attached to the top surface of the first substrate. The openings extend from the top surface to the bottom surface of the second substrate. The first pads of the first substrate are in the opening of the second substrate; the second pads of the first substrate are not covered by the second substrate. The second substrate is further provided with a pad on the top surface and a second sub-circuit electrically connected to the pad of the second substrate.
Abstract:
A probe module includes a base adapted to be fixed to a tester, an engaging seat engaged with the base, a signal connector, an electrical signal transmitting member, and two probes located below the engaging seat. The engaging seat has an engaging opening and a first end surface. The signal connector is provided in the engaging opening, and has a signal conductive portion and a conductive ground. A signal wire and a ground layer of the electrical signal transmitting member are electrically connected to the signal conductive portion and the conductive ground, respectively. The probes are electrically connected to the signal wire and the ground layer, respectively. The probes extend out of a first extending reference plane of the first end surface. Alternatively, a reflector is used to reflect an image of the probes upward. Whereby, a length of the electrical signal transmitting member can be further shortened.
Abstract:
A multilayer circuit board includes a first substrate and a second substrate in stack. The first substrate first substrate a first pad, and a first circuit, wherein the first circuit is embedded in the first substrate, and the first pad is electrically connected to the first circuit. The second substrate has a first through hole, a second pad, and a second circuit, wherein the first through hole is opened at both sides of the second substrate, and the first pad of the first substrate is in the first through hole; the second circuit is embedded in the second substrate, and the second pad is electrically connected to the second circuit. The pads on each substrate are exposed by the through hole(s) of the above substrate(s) to shorten the null sections of the interconnectors and reduce the interference from the null sections.
Abstract:
A testing jig includes a substrate and a plurality of conductive elastic pieces, wherein the substrate has a recess and a plurality of circuits; the recess is located on a top surface of the substrate, while the circuits are provided on the top surface of the substrate. The conductive elastic pieces are provided on the substrate, and are respectively electrically connected to the circuits. Each of the conductive elastic pieces has a contact portion located within an orthographic projection range of the recess, wherein each of the contact portions contacts a pad of a DUT. Whereby, attenuation happens while transmitting test signals with high frequency can be effectively reduces by using the conductive elastic pieces to transmit test signals.
Abstract:
A high-frequency cantilever type probe card includes a base board, a probe base provided on the base board, two probes, and a capacitor having opposite ends electrically connected to the probes respectively. The probe base is made of an insulating material, and the probes are made of a conductive material. Each of the probes has an arm and a tip, wherein the arm is connected to the probe base, and the tip is adapted to contact a pad of a DUT. When the DUT generates a testing signal with a high frequency, and the testing signal is transmitted to one of the probes, the capacitor, and the other one of the probes in sequence, and then transmitted back to the DUT.
Abstract:
A multilayer circuit board includes a first substrate and a second substrate in stack. The first substrate is provided with a first pad, a second pad, and a first sub-circuit. The first pad and the second pad are electrically connected to the first sub-circuit. The second substrate has a top surface, a bottom surface, and an opening. The bottom surface of the second substrate is attached to the top surface of the first substrate. The opening extends from the top surface to the bottom surface of the second substrate. The first pad of the first substrate is in the opening of the second substrate; the second pad of the first substrate is not covered by the second substrate. The second substrate further provided with a pad on the top surface and a second sub-circuit electrically connected to the pad of the second substrate.
Abstract:
A probe card includes a connecting circuit board, a connector, and a probe. The connecting circuit board includes a substrate having a signal via and a plurality of ground vias, a signal feeding structure disposed on the substrate, and a connecting layer having the connector disposed thereon. The signal feeding structure includes a signal feeding pad and a ground pad, which is connected to the ground via, and has a matching compensation opening having a first side and a second side wider than the first side. The signal feeding pad does not contact the ground pad, and has a first end and a second end wider than the first end. The second end is connected to the signal via. The connecting layer has a signal connecting portion connected to the signal via, and a ground connecting portion connected to the ground vias. The probe is connected to the first end.
Abstract:
A method of operating a testing system is provided, wherein the testing system has a test machine and a probe module, which has a first probe set and a second probe set. One of the first probe set and the second probe set can be connected to the test machine. The method includes the following steps: connect the test machine and the first probe set; calibrate the testing system; abut the first probe set against a DUT to do electrical tests; disconnect the first probe set and the DUT; disconnect the test machine and the first probe set; connect the test machine and the second probe set; calibrate the testing system again; abut the second probe set against the DUT to do electrical tests.
Abstract:
A testing jig includes a substrate, a carrier provided on the substrate, two conductive members made of a conductive material, and a compensation member made of a conductive material. The substrate has a signal circuit and a grounding circuit thereon. The carrier has a base board made of an insulating material and a conductive circuit made of a conductive material provided thereon. The base board has a signal perforation aligning with the signal circuit, a grounding perforation aligning with the grounding circuit, and multiple compensation holes. The conductive members both have an end exposed out of the carrier, and are respectively fitted in the signal perforation and the grounding perforation to make another end thereof contact the signal circuit or the grounding circuit. The compensation member is fitted in one of the compensation holes to be electrically connected to the conductive member in the grounding perforation through the conductive circuit.