Abstract:
The invention relates to an electronic device provided with an electronic component which comprises an integrated circuit arrangement including a semiconducting substrate, active components, and passive components such as capacitors and resistors. The resistors comprise materials of a high resistivity and can be manufactured with resistance values which lie within a narrow tolerance range. The invention further relates to a transmitter, a receiver, an electronic component, a peripheral circuit, a current supply circuit, a filter module, and an integrated circuit arrangement.
Abstract:
The construction comprises a substrate (1), a barrier layer (2), a resistance layer (3), a dielectric layer (4) with a dielectric constant (K) (7), an electrode (5), a second dielectric layer (6) and a second electrode (7). This sandwich assembly is enclosed by terminals (8) to form a suppression filter. A track (9) passes through the dielectric layers, connecting the resistance layer and the top dielectric layer
Abstract:
A device for dynamic impedance matching between a power amplifier and an antenna, having a circulator ( 210 ), which routes a signal received from the power amplifier ( 10 ) at a first port via a second port to the antenna ( 30 ) and diverts the signal reflected at the antenna ( 30 ) and received at the second port through a third port; and a controllable matching network ( 24, 240, 250 ); is characterized in that a directional coupler ( 200 ) diverts a proportion of the signal traveling from the power amplifier ( 10 ) to the antenna ( 30 ), from which the magnitude and phase of the signal may be derived, to a signal detector ( 220 ); and the circulator ( 210 ) routes the entire signal reflected at the antenna ( 30 ) into the signal detector ( 220 ); wherein the signal detector ( 220 ) passes the magnitude and phase of both the signal traveling to the antenna ( 30 ) and the signal reflected at the antenna ( 30 ) to a controller ( 230 ), which evaluates the information received from the signal detector ( 220 ) in order to determine the present impedance value of the antenna ( 30 ) and to correct the controllable matching network ( 24, 240, 250 ) having active and passive components in accordance with the determined impedance value of the antenna ( 30 ).
Abstract:
According to an embodiment of the invention, signals coming from a number of pixels or sub-pixels are compared and those signals from pixels or sub-pixels, which are substantially brighter than the other pixels in the comparison, are excluded from contributing to the output signal, to suppress direct detection events in X-ray detectors. For this an X-ray detector apparatus (101) can comprise: -an array (102) of pixel arrangements (303), -each pixel arrangement (303) comprising at least one radiation collection device (311) for converting incident radiation into a collection device signal, -switching arrangements (313, 324, 314, 142; 313, 315, 314, 352, 142; 313, 315, 314; 361) for providing to respectively one output element (141) a signal derived from the collection device signals of a plurality of radiation collection devices (311) of at least one pixel arrangement (303).
Abstract:
Scattered radiation has non-intuitive properties. A signalling system (28) is presented which provides a perceptible signal (34) being indicative of a predicted or measured spatial distribution of scattered radiation. An embodiment provides for easy assessment of the individual risk of scattered radiation exposure for personnel working in an environment exposed to scattered radiation. A method for predicting a distribution of scattered radiation takes into account at least one object related parameter (18) and at least one radiation related parameter (22) and, in response hereto, predicts a distribution of scattered radiation.
Abstract:
A detector unit (301) for detecting electromagnetic radiation (106), the detector unit (301) comprising a conversion material (332) adapted for converting impinging electromagnetic radiation (106) into electric charge carriers, a charge collection electrode (331) adapted for collecting the converted electric charge carriers, a shielding electrode (334, 335) adapted to form a capacitance with the charge collection electrode (331), and an evaluation circuit (312 to 315) electrically coupled with the charge collection electrode (331) and adapted for evaluating the electromagnetic radiation (106) based on the collected electric charge carriers.
Abstract:
A bulk acoustic wave resonator comprising a substrate (5), a Bragg reflector (4), a top (1) and a bottom (3) electrode and a piezoelectric layer (2) with means for suppression of the pass-band ripples in a bulk acoustic wave filter. The means for absorbing or scattering the spurious modes are a roughened rear side of the substrate (6), an absorbing layer (5) disposed on the rear side of the substrate (6) and/or an absorbing layer (5) disposed on the front side of the substrate.
Abstract:
The present invention relates to determining changes in the X-ray emission yield of an X-ray tube, in particular determining dose degradation. In order to provide determination of such changes, an X-ray source is provided comprising a cathode, an anode; and at least one X-ray sensor (16). The cathode emits electrons towards the anode and the anode comprises a target area on which the electrons impinge, generating X-ray radiation. An X-ray barrier (24) is provided with an aperture (26) for forming an emitting X-ray beam from the X-ray radiation, wherein the emitting X-ray beam has a beam formation (30) with a central axis. The at least one X-ray sensor is arranged within the beam formation and measures the X-ray intensity for a specific direction of X-ray emission with an angle with respect to the central axis. The at least one X- ray sensor can be positioned inside the beam formation (30), but outside the "actual field of view" (40) as determined by a diaphragm (36).
Abstract:
The application describes an X-ray detector for use in a medical equipment, wherein the detector comprises an unit for transforming X-ray radiation into electrical charge, a first capacitor for being charged by an electrical charge, wherein the first capacitor is electrically connected to the unit for transforming, a second capacitor for being charged by an electrical charge, and a first gain switching gate, wherein the second capacitor is electrically connected with the unit for transforming if the first gain switching gate is in on-state, wherein the detector is adapted to switch on the first gain switching gate for short periods. Further the application describes an X-ray system comprising a detector according to the invention, wherein the system is adapted for gain selection, wherein the detector is adapted to switch on the first gain switching gate for short periods. Further, the application describes a method for using a detector according to the inventive concept, wherein the first gain switching gate is switched on only for short periods of time for redistribution of electrical charge between the first capacitor and the second capacitor.