Abstract:
Various aspects described herein relate to low-loss multi-band multiplexing schemes for a wireless communications system, for example, a 5th Generation (5G) New Radio (NR) system. In an aspect, a multiplexer for multi-band wireless communications comprises at least one tuning component configured to transmit or receive at least one signal within a frequency band that is selected from a plurality of frequency bands. The multiplexer further comprises at least one combining component, communicatively coupled with the at least one tuning component, configured to transmit or receive the at least one signal within the selected frequency band. In an aspect, the at least one tuning component is integrated on a chip and the at least one combining component is not integrated on the chip.
Abstract:
A method and apparatus are disclosed for a configurable mixer capable of operating in a linear, a legacy, and a low-power mode. In the linear mode, the configurable mixer is configured to operate as a double-balanced mixer to multiply a first differential signal by a second differential signal. In the legacy mode, the configurable mixer is configured to as a double-balanced mixer to multiply a differential signal by a single-ended signal. In the low-power mode, the configurable mixer is configured to operate as a single-balanced mixer to multiply a differential signal by a single-ended signal. The operating mode of the configurable mixer may be based, at least in part, on a mode control signal. In some embodiments, the configurable mixer may be included in an analog front end of a wireless communication device.
Abstract:
An apparatus is disclosed for phase-shifting signals with a compensation circuit. In example implementations, an apparatus for phase-shifting signals includes a phase shifter having a first port and a second port. The phase shifter also includes a signal phase generator, a compensation circuit, and a vector modulator. The compensation circuit includes a first capacitor with a first capacitance and a second capacitor with a second capacitance. The first capacitance is different from the second capacitance. The signal phase generator is coupled between the first port and the compensation circuit. The vector modulator is coupled between the compensation circuit and the second port.
Abstract:
An apparatus is disclosed for mixing signals with a multi-mode mixer for frequency translation. In example implementations, a multi-mode mixer includes a supply voltage node, a ground node, a first data signal coupler, and a second data signal coupler. The multi-mode mixer also includes a mixer core and a current control switch. The mixer core is coupled between the first data signal coupler and the second data signal coupler. The current control switch is configured to selectively enable or disable flow of a current through the mixer core. The first data signal coupler, the second data signal coupler, the mixer core, and the current control switch are coupled together in series between the supply voltage node and the ground node.
Abstract:
A circuit includes an active balun having an RF signal input and having differential signal outputs, the active balun including a first pair of transistors coupled to the RF signal input, the first pair of transistors including a first transistor of a first type and a second transistor of a second type, wherein the first type and second type are complementary; and an intermodulation distortion (IMD) sink circuit having an operational amplifier (op amp) coupled between a first node and a second node, wherein the first transistor and second transistor are coupled in series between the first node and the second node.
Abstract:
An apparatus is disclosed for bidirectional variable gain amplification. In an example aspect, an apparatus comprises an antenna element of an antenna array and a wireless transceiver. The wireless transceiver comprises a transmit path coupled to the antenna element, a receive path coupled to the antenna element, and a phase shifter disposed in both the transmit path and the receive path. The phase shifter is configured to operate in an active mode and comprises a first bidirectional variable gain amplifier and a second bidirectional variable gain amplifier.
Abstract:
A multi-stage low-noise amplifier (LNA) device with a band pass response includes a first LNA in series with a second LNA. The device further includes multiple outputs coupled to the second LNA. Each of the outputs is capable of being active at the same time. The device further includes a high pass filter coupled between the first LNA and the second LNA.
Abstract:
A circuit, a method and an apparatus, are described. A radio frequency, RF, signal received from a transmission line (606) is provided to the source of a transistor (624a) in a common-gate amplification circuit (624). A series resonance (632, 634) connected to the source provides a low impedance path to ground for interfering RF components in the RF signal. The series resonance (632, 634) is tuned to provide a high impedance to a band of frequencies centered on a frequency of interest and to shunt interfering RF components outside the band of frequencies centered on the frequency of interest. The interfering RF components may include a harmonic of the frequency of interest.