Abstract:
Wireless signal processing may be improved by using a configurable baseband filter (BBF) in the receive path of a transceiver. A configurable BBF may accommodate processing of different wireless signals in a single integrated circuit (IC) chip. For example, a single IC may support processing of 5G mmWave RF signals and 5G sub-7 GHz RF signals by reconfiguring the BBF with settings appropriate for the different wireless signals. The reconfiguring of the BBF may include adjusting a bandwidth of the BBF and/or adjusting a filter order of the BBF. The reconfiguring of the BBF may be performed in response to detection of jammer signals to improve rejection of the jammer signals.
Abstract:
This disclosure provides systems, methods, and devices for wireless communication that support reconfiguring degeneration components in a converged RF transceiver supporting carrier aggregation across sub-6 GHz frequency bands and mmWave frequency bands. In a first aspect, an apparatus includes an input port configured to receive a mixer input signal; a first mixer forming at least a portion of an HRM mixer and coupled to the input port; a first configurable degeneration component of a first processing path coupled between the input port and the first mixer; and a controller coupled to the first degeneration component, wherein the controller is configured to control a first aspect of a first degeneration component. Other aspects and features are also claimed and described.
Abstract:
A circuit includes an active balun having an RF signal input and having differential signal outputs, the active balun including a first pair of transistors coupled to the RF signal input, the first pair of transistors including a first transistor of a first type and a second transistor of a second type, wherein the first type and second type are complementary; and an intermodulation distortion (IMD) sink circuit having an operational amplifier (op amp) coupled between a first node and a second node, wherein the first transistor and second transistor are coupled in series between the first node and the second node.
Abstract:
Omni-band amplifiers supporting multiple band groups are disclosed. In an exemplary design, an apparatus (e.g., a wireless device, an integrated circuit, etc.) includes at least one gain transistor and a plurality of cascode transistors for a plurality of band groups. Each band group covers a plurality of bands. The gain transistor(s) receive an input radio frequency (RF) signal. The cascode transistors are coupled to the gain transistor(s) and provide an output RF signal for one of the plurality of band groups. In an exemplary design, the gain transistor(s) include a plurality of gain transistors for the plurality of band groups. One gain transistor and one cascode transistor are enabled to amplify the input RF signal and provide the output RF signal for the selected band group. The gain transistors may be coupled to different taps of a single source degeneration inductor or to different source degeneration inductors.
Abstract:
A multi-stage low-noise amplifier (LNA) device with a band pass response includes a first LNA in series with a second LNA. The device further includes multiple outputs coupled to the second LNA. Each of the outputs is capable of being active at the same time. The device further includes a high pass filter coupled between the first LNA and the second LNA.
Abstract:
Methods and apparatus including: setting up a plurality of configurations for a plurality of local oscillator (LO) paths of a carrier aggregation (CA) transceiver operating with a plurality of bands; calculating and comparing frequencies for each LO path of the plurality of LO paths and at least one divider ratio of LO dividers for each band of the plurality of bands to identify frequency conflicts; and reconfiguring the LO dividers for the plurality of LO paths and the plurality of bands when the frequency conflicts are identified.
Abstract:
A device includes a reconfigurable receiver front end having variable gain and variable bandwidth configured to tune to a plurality of communication channels in a communication band, the reconfigurable receiver front end responsive to a signal power level.
Abstract:
A device includes a common gate buffer circuit configured to receive a communication signal, an interfering signal detector configured to provide a control signal indicative of the power level of an interfering signal present with the communication signal and a control circuit configured to control an amount of current flowing through the common gate buffer circuit based on the control signal
Abstract:
Certain aspects of the present disclosure generally relate to techniques and apparatus for operating a wireless receiver of the apparatus in a high linearity mode. An example method includes operating the apparatus in a first mode with transmission of a plurality of transmit signals. The method also includes attenuating a received signal via an attenuator while operating the apparatus in the first mode. The method further includes amplifying the attenuated signal with an amplifier while operating the apparatus in the first mode. For certain aspects, the method further involves operating the apparatus in a second mode, bypassing the attenuator while operating the apparatus in the second mode, and amplifying the received signal with the amplifier while operating the apparatus in the second mode.
Abstract:
A programmable filter includes a first programmable filter instance comprising a first adjustable active inductance capacitively coupled to a signal receive path, the capacitive coupling comprising at least one adjustable capacitance, the adjustable active inductance and the at least one adjustable capacitance configurable to provide a filter response at a first selected frequency, and a second programmable filter instance comprising a second adjustable active inductance capacitively coupled to the signal receive path, the capacitive coupling comprising at least one adjustable capacitance, the second adjustable active inductance and the at least one adjustable capacitance configurable to provide a filter response at a second selected frequency.