Abstract:
A reconfigurable filter circuit has a first path including a transimpedance amplifier (TIA). The transimpedance amplifier has an input that receives an input current and an output that outputs a voltage. The reconfigurable filter circuit also includes a switchable feedback path. The switchable feedback path includes a first low-pass filter coupled to an output of the TIA. The switchable feedback path also includes a first switch to couple the feedback path to provide a feedback current to the first path resulting in a bandpass response in the output voltage when the switch is closed and a low-pass response in the output voltage when the switch is open.
Abstract:
A circuit includes an active balun having an RF signal input and having differential signal outputs, the active balun including a first pair of transistors coupled to the RF signal input, the first pair of transistors including a first transistor of a first type and a second transistor of a second type, wherein the first type and second type are complementary; and an intermodulation distortion (IMD) sink circuit having an operational amplifier (op amp) coupled between a first node and a second node, wherein the first transistor and second transistor are coupled in series between the first node and the second node.
Abstract:
Omni-band amplifiers supporting multiple band groups are disclosed. In an exemplary design, an apparatus (e.g., a wireless device, an integrated circuit, etc.) includes at least one gain transistor and a plurality of cascode transistors for a plurality of band groups. Each band group covers a plurality of bands. The gain transistor(s) receive an input radio frequency (RF) signal. The cascode transistors are coupled to the gain transistor(s) and provide an output RF signal for one of the plurality of band groups. In an exemplary design, the gain transistor(s) include a plurality of gain transistors for the plurality of band groups. One gain transistor and one cascode transistor are enabled to amplify the input RF signal and provide the output RF signal for the selected band group. The gain transistors may be coupled to different taps of a single source degeneration inductor or to different source degeneration inductors.
Abstract:
A method and apparatus are disclosed for a configurable mixer capable of operating in a linear, a legacy, and a low-power mode. In the linear mode, the configurable mixer is configured to operate as a double-balanced mixer to multiply a first differential signal by a second differential signal. In the legacy mode, the configurable mixer is configured to as a double-balanced mixer to multiply a differential signal by a single-ended signal. In the low-power mode, the configurable mixer is configured to operate as a single-balanced mixer to multiply a differential signal by a single-ended signal. The operating mode of the configurable mixer may be based, at least in part, on a mode control signal. In some embodiments, the configurable mixer may be included in an analog front end of a wireless communication device.
Abstract:
A device includes a multi-mode low noise amplifier (LNA) having a first amplifier stage, and a second amplifier stage coupled to the first amplifier stage, the second amplifier stage having a plurality of amplification paths configured to amplify a plurality of carrier frequencies, the first amplifier stage configured to bypass the second amplifier stage when the first amplifier stage is configured to amplify a single carrier frequency.
Abstract:
A multi-stage low-noise amplifier (LNA) device with a band pass response includes a first LNA in series with a second LNA. The device further includes multiple outputs coupled to the second LNA. Each of the outputs is capable of being active at the same time. The device further includes a high pass filter coupled between the first LNA and the second LNA.
Abstract:
A device (400) includes a main two-stage low noise amplifier (LNA) configured to amplify a carrier aggregation (CA) communication signal, the main two-stage LNA comprising a first LNA stage (410) and a second LNA stage (417), an output of the first LNA stage (410) having a first stage second order intermodulation product, the second LNA stage (417) comprising a phase-inverter configured to phase-invert the output of the first LNA stage (410) to generate a second stage phase-inverted output, and an auxiliary LNA stage (420) coupled to the main two-stage LNA, the auxiliary LNA stage(420) configured to cancel the first stage second order intermodulation product.
Abstract:
A device (600) includes a load circuit (630) configured to receive an amplified communication signal (615), the load circuit (630) having a center tapped inductor structure (632, 634) configured to divide the amplified communication signal (615) into a first portion (641) and a second portion (642), the load circuit (630) configured to resonate at a harmonic of the amplified communication signal (615).
Abstract:
Multiple-input multiple-output (MIMO) low noise amplifiers (LNAs) supporting carrier aggregation are disclosed. In an exemplary design, an apparatus (e.g., a wireless device, an integrated circuit, etc.) includes a MIMO LNA having a plurality of gain circuits, a drive circuit, and a plurality of load circuits. The gain circuits receive at least one input radio frequency (RF) signal and provide at least one amplified RF signal. Each gain circuit receives and amplifies one input RF signal and provides one amplified RF signal when the gain circuit is enabled. The at least one input RF signal include transmissions sent on multiple carriers at different frequencies to the wireless device. The drive circuit receives the at least one amplified RF signal and provides at least one drive RF signal. The load circuits receive the at least one drive RF signal and provide at least one output RF signal.
Abstract:
Omni-band amplifiers supporting multiple band groups are disclosed. In an exemplary design, an apparatus (e.g., a wireless device, an integrated circuit, etc.) includes at least one gain transistor and a plurality of cascode transistors for a plurality of band groups. Each band group covers a plurality of bands. The gain transistor(s) receive an input radio frequency (RF) signal. The cascode transistors are coupled to the gain transistor(s) and provide an output RF signal for one of the plurality of band groups. In an exemplary design, the gain transistor(s) include a plurality of gain transistors for the plurality of band groups. One gain transistor and one cascode transistor are enabled to amplify the input RF signal and provide the output RF signal for the selected band group. The gain transistors may be coupled to different taps of a single source degeneration inductor or to different source degeneration inductors.