Abstract:
An etching method, such as for forming a micromechanical device, is disclosed. One embodiment of the method is for releasing a micromechanical structure, comprising, providing a substrate; providing a sacrificial layer directly or indirectly on the substrate; providing one or more micromechanical structural layers on the sacrificial layer; performing a first etch to remove a portion of the sacrificial layer, the first etch comprising providing an etchant gas and energizing the etchant gas so as to allow the etchant gas to physically, or chemically and physically, remove the portion of the sacrificial layer; performing a second etch to remove additional sacrificial material in the sacrificial layer, the second etch comprising providing a gas that chemically but not physically etches the additional sacrificial material. Another embodiment of the method is for etching a silicon material on or within a substrate, comprising: performing a first etch to remove a portion of the silicon, the first etch comprising providing an etchant gas and energizing the etchant gas so as to allow the etchant gas to physically, or chemically and physically, remove the portion of silicon; performing a second etch to remove additional silicon, the second etch comprising providing an etchant gas that chemically but not physically etches the additional silicon.
Abstract:
A spatial light modulator having a substrate holding an array of deflectable (e.g. mirror) elements. The deflectable elements are deflectably coupled to the substrate via corresponding hinges, each hinge being disposed on a side of the deflectable element opposite to the side on which the substrate is disposed. By placing the hinge in this way the fill factor of the array is improved. The hinge can be provided flush against the deflectable element, or it can be provided with a gap between the deflectable element and the hinge. The hinge can be attached via one or more posts or walls connecting to the substrate, and with a flexible or deformable portion that is substantially or entirely hidden from view when viewed through the substrate (e.g. a glass substrate). In one embodiment, the hinge is connected to the undersides of both the substrate and the deflectable element, and connects towards a center part of the deflectable element. In this way, a longer hinge is provided thus reducing strain on any one part of the hinge. Advantages of the present invention include: (1) increased fill factor as the torsion hinge is hidden behind the reflective plate; (2) increased contrast due to fewer scattering optical surfaces exposed, and due to a greater ability to control their angle and geometry; and (3) increased geometric flexibility to optimize electro-mechanical performance and robustness with respect to manufacturing.
Abstract:
A spatial light modulator having a substrate holding an array of deflectable (e.g. mirror) elements. The deflectable elements are deflectably coupled to the substrate via corresponding hinges, each hinge being disposed on a side of the deflectable element opposite to the side on which the substrate is disposed. By placing the hinge in this way the fill factor of the array is improved. The hinge can be provided flush against the deflectable element, or it can be provided with a gap between the deflectable element and the hinge. The hinge can be attached via one or more posts or walls connecting to the substrate, and with a flexible or deformable portion that is substantially or entirely hidden from view when viewed through the substrate (e.g. a glass substrate). In one embodiment, the hinge is connected to the undersides of both the substrate and the deflectable element, and connects towards a center part of the deflectable element. In this way, a longer hinge is provided thus reducing strain on any one part of the hinge. Advantages of the present invention include: (1) increased fill factor as the torsion hinge is hidden behind the reflective plate; (2) increased contrast due to fewer scattering optical surfaces exposed, and due to a greater ability to control their angle and geometry; and (3) increased geometric flexibility to optimize electro-mechanical performance and robustness with respect to manufacturing.
Abstract:
An etching method, such as for forming a micromechanical device, is disclosed. One embodiment of the method is for releasing a micromechanical structure, comprising, providing a substrate (10); providing a sacrificial layer (20) directly or indirectly on the substrate; providing one or more micromechanical structural layers (30) on the sacrificial layer; performing a first etch to remove a portion of the sacrificial layer (20), the first etch comprising providing an etchant gas and energizing (42) the etchant gas so as to allow the etchant gas to physically, or chemically and physically, remove the portion of the sacrificial layer; performing a second etch to remove additional sacrificial material in the sacrificial layer, the second etch comprising providing a gas that chemically but not physically etches the additional sacrificial material.
Abstract:
A spatial light modulator (100) having a substrate (110) holding an array of deflectable (e.g. mirror) elements (120). The deflectable elements (120) are deflectably coupled to the substrate (110) via corresponding hinges (134), each hinge (134) being disposed on a side of the deflectable element (120) opposite to the side on which the substrate (110) is disposed. By placing the hinge (134) in this way the fill factor of the array is improved. The hinge (134) can be provided flush against the deflectable element (120), or it can be provided with a gap between the deflectable element (120) and the hinge (134). The hinge (134) can be attached via one or more posts (136, 138) or walls connecting to the substrate (110), and with a flexible or deformable portion that is substantially or entirely hidden from view then viewed through the substrate (110) (e.g. a glass substrate). In one embodiment, the hinge (134) is connected to the undersides of both the substrate (110) and the deflectable element (120), and connects towards a center part of the deflectable element (120). In this way, a longer hinge (134) is provided thus reducing strain on any one part of the hinge (134).