Abstract:
An etching method, such as for forming a micromechanical device, is disclosed. One embodiment of the method is for releasing a micromechanical structure, comprising, providing a substrate; providing a sacrificial layer directly or indirectly on the substrate; providing one or more micromechanical structural layers on the sacrificial layer; performing a first etch to remove a portion of the sacrificial layer, the first etch comprising providing an etchant gas and energizing the etchant gas so as to allow the etchant gas to physically, or chemically and physically, remove the portion of the sacrificial layer; performing a second etch to remove additional sacrificial material in the sacrificial layer, the second etch comprising providing a gas that chemically but not physically etches the additional sacrificial material. Another embodiment of the method is for etching a silicon material on or within a substrate, comprising: performing a first etch to remove a portion of the silicon, the first etch comprising providing an etchant gas and energizing the etchant gas so as to allow the etchant gas to physically, or chemically and physically, remove the portion of silicon; performing a second etch to remove additional silicon, the second etch comprising providing an etchant gas that chemically but not physically etches the additional silicon.
Abstract:
A projection system, a spatial light modulator, and a method for forming micromirrors are disclosed. A substrate comprises circuitry and electrodes for electrostatically deflecting micromirror elements that are disposed within an array of such elements forming the spatial light modulator. In one embodiment, the substrate is a silicon substrate having circuitry and electrodes thereon for electrostatically actuating adjacent micromirror elements, and the substrate is fully or selectively covered with a light absorbing material.
Abstract:
A sacrificial layer and a method for applying said sacrificial layer in fabricating microelectromechanical devices are disclosed herein. The sacrificial layer comprises an early transition metal. Specifically, the sacrificial layer comprises an early transition metal element, an early transition metal alloy or an early transition metal silicide.
Abstract:
A spatial light modulator is disclosed, along with methods for making such a modulator, that comprises an array of micromirrors each having a hinge and a micromirror plate held via the hinge on a substrate, the micromirror plate being disposed in a plane separate from the hinge and having a diagonal extending across the micromirror plate, the micromirror plate being attached to the hinge such that the micromirror plate can rotate along a rotation axis that is parallel to, but off-set from the diagonal of the micromirror plate. Also disclosed is a projection system that comprises such a spatial light modulator, as well as a light source, condensing optics, wherein light from the light source is focused onto the array of micromirrors, projection optics for projecting light selectively reflected from the array of micromirrors onto a target, and a controller for selectively actuating the micromirrors in the array.
Abstract:
A spatial light modulator is disclosed, along with methods for making such a modulator that comprises an array of mirror devices each having at least a preferably at least a first electrode and a second electrode. The first electrode is designated for driving the mirror plate of the micromirror device to an ON state, and the second electrode is designated for driving the mirror plate to an OFF state. The two electrodes can be disposed on the same side of the mirror plate but on opposite sides of the rotation axis of the mirror plate for driving the mirror plate to rotate in opposite directions. Alternatively, the two electrodes can be disposed on the opposite sides of the mirror plate, but on the same side of the rotation axis of the mirror plate for driving the mirror plate to rotate in opposite directions. The ON state and OFF state of the mirror plate can be defined by stops. The stops may be formed on substrate(s), hinge structures holding the mirror plates of the micromirror device and/or a desired location within the micromirror device. Alternatively, the electrodes for the ON state and the OFF state can be used as stops, either individually or in combination, or in combination with other component(s), such as substrate(s) of the micromirror device. The OFF state angle and the ON state angle are preferably different.
Abstract:
A spatial light modulator is disclosed, along with a method for making such a modulator that comprises an array of micromirror devices. The center-to-center distance and the gap between adjacent micromirror devices are determined corresponding to the light source being used so as to optimize optical efficiency and performance quality. The micromirror device comprises a hinge support formed on a substrate and a hinge that is held by the hinge support. A mirror plate is connected to the hinge via a contact, and the distance between the mirror plate and the hinge is determined according to desired maximum rotation angle of the mirror plate, the optimum gap and pitch between the adjacent micromirrors.In a method of fabricating such spatial light modulator, one sacrificial layer is deposited on a substrate followed by forming the mirror plates, and another sacrificial layer is deposited on the mirror plates followed by forming the hinge supports. The two sacrificial layers are removed via the small gap between adjacent mirror devices with spontaneous vapor phase chemical etchant. Also disclosed is a projection system that comprises such a spatial light modulator, as well as a light source, condensing optics, wherein light from the light source is focused onto the array of micromirrors, projection optics for projecting light selectively reflected from the array of micromirrors onto a target, and a controller for selectively actuating the micromirrors in the array.
Abstract:
A micromirror device is disclosed, along with a method of making such a micromirror device that comprises a mirror plate, a hinge and an extension plate. The extension plate is formed on the mirror plate and between the mirror plate and the electrode associated with the mirror plate for rotating the mirror plate. The.extension plate can be metallic or dielectric. Also disclosed is a method of making such a micromirror device. In particular, the extension plate is formed after the formation of the mirror plate. Moreover, also disclosed is a projection system that comprises a spatial light modulator having an array of such micromirrors, as well as a light source, condensing optics, wherein light from the light source is focused onto the array of micromirrors, projection optics for projecting light selectively reflected from the array of micromirrors onto a target, and a controller for selectively actuating the micromirrors in the array.