Abstract:
Methods and systems for measuring periodic structures using multi-angle X-ray reflectance scatterometry (XRS) are disclosed. For example, a method of measuring a sample by X-ray reflectance scatterometry involves impinging an incident X-ray beam on a sample having a periodic structure to generate a scattered X-ray beam, the incident X-ray beam simultaneously providing a plurality of incident angles and a plurality of azimuthal angles. The method also involves collecting at least a portion of the scattered X-ray beam.
Abstract:
Systems and approaches for semiconductor metrology and surface analysis using Secondary Ion Mass Spectrometry (SIMS) are disclosed. In an example, a secondary ion mass spectrometry (SIMS) system includes a sample stage. A primary ion beam is directed to the sample stage. An extraction lens is directed at the sample stage. The extraction lens is configured to provide a low extraction field for secondary ions emitted from a sample on the sample stage. A magnetic sector spectrograph is coupled to the extraction lens along an optical path of the SIMS system. The magnetic sector spectrograph includes an electrostatic analyzer (ESA) coupled to a magnetic sector analyzer (MSA).
Abstract:
Methods and systems for measuring periodic structures using multi-angle X-ray reflectance scatterometry (XRS) are disclosed. For example, a method of measuring a sample by X-ray reflectance scatterometry involves impinging an incident X-ray beam on a sample having a periodic structure to generate a scattered X-ray beam, the incident X-ray beam simultaneously providing a plurality of incident angles and a plurality of azimuthal angles. The method also involves collecting at least a portion of the scattered X-ray beam.
Abstract:
A method of measurement and control of the surface potential of a sample using measuring the distribution of kinetic energy of charged particles emitted from a surface of a sample. A shift in kinetic energy of the charged particles is determined and the surface potential of the surface of the sample is changed in response the shift in kinetic energy of the charged particles.
Abstract:
Methods and systems for fabricating platelets of a monochromator for X-ray photoelectron spectroscopy (XPS) are disclosed. For example, a method of fabricating a platelet of a monochromator for X-ray photoelectron spectroscopy involves placing a crystal on a stage of an X-ray measuring apparatus, the crystal having a top surface. The method also involves measuring, by X-ray reflection, an orientation of a crystal plane of the crystal, the crystal plane beneath the top surface of the crystal and having a primary axis. The method also involves measuring a surface angle of the top surface of the crystal by measuring a light beam reflected from the top surface of the crystal.
Abstract:
Systems and methods for characterizing films by X-ray photoelectron spectroscopy (XPS) are disclosed. For example, a system for characterizing a film may include an X-ray source for generating an X-ray beam having an energy below the k-edge of silicon. A sample holder may be included for positioning a sample in a pathway of the X-ray beam. A first detector may be included for collecting an XPS signal generated by bombarding the sample with the X-ray beam. A second detector may be included for collecting an X-ray fluorescence (XRF) signal generated by bombarding the sample with the X-ray beam. Monitoring/estimation of the primary X-ray flux at the analysis site may be provided by X-ray flux detectors near and at the analysis site. Both XRF and XPS signals may be normalized to the (estimated) primary X-ray flux to enable film thickness or dose measurement without the need to employ signal intensity ratios.
Abstract:
Systems and approaches for semiconductor metrology and surface analysis using Secondary Ion Mass Spectrometry (SIMS) are disclosed. In an example, a secondary ion mass spectrometry (SIMS) system includes a sample stage. A primary ion beam is directed to the sample stage. An extraction lens is directed at the sample stage. The extraction lens is configured to provide a low extraction field for secondary ions emitted from a sample on the sample stage. A magnetic sector spectrograph is coupled to the extraction lens along an optical path of the SIMS system. The magnetic sector spectrograph includes an electrostatic analyzer (ESA) coupled to a magnetic sector analyzer (MSA).
Abstract:
Methods and systems for fabricating platelets of a monochromator for X-ray photoelectron spectroscopy (XPS) are disclosed. For example, a method of fabricating a platelet of a monochromator for X-ray photoelectron spectroscopy involves placing a crystal on a stage of an X-ray measuring apparatus, the crystal having a top surface. The method also involves measuring, by X-ray reflection, an orientation of a crystal plane of the crystal, the crystal plane beneath the top surface of the crystal and having a primary axis. The method also involves measuring a surface angle of the top surface of the crystal by measuring a light beam reflected from the top surface of the crystal.
Abstract:
Systems and methods for characterizing films by X-ray photoelectron spectroscopy (XPS) are disclosed. For example, a system for characterizing a film may include an X-ray source for generating an X-ray beam having an energy below the k-edge of silicon. A sample holder may be included for positioning a sample in a pathway of the X-ray beam. A first detector may be included for collecting an XPS signal generated by bombarding the sample with the X-ray beam. A second detector may be included for collecting an X-ray fluorescence (XRF) signal generated by bombarding the sample with the X-ray beam. Monitoring/estimation of the primary X-ray flux at the analysis site may be provided by X-ray flux detectors near and at the analysis site. Both XRF and XPS signals may be normalized to the (estimated) primary X-ray flux to enable film thickness or dose measurement without the need to employ signal intensity ratios.