Abstract:
A method for checking an out-of-step of a synchronous motor includes: detecting electric degrees of the synchronous motor, in which the electric degrees comprise at least a first electric degree and a second electric degree detected at a preset interval, and the second electric degree is detected after the first electric degree; comparing the first electric degree with the second electric degree to obtain a comparing result; and determining that the synchronous motor is out of step when the comparing result satisfies a preset requirement. It is determined that the synchronous motor is out of step when the electric degree keeps unchanged or decreases progressively, or an increment of the electric degree is very small.
Abstract:
A power system for an electric vehicle, an electric vehicle and a motor controller for an electric vehicle are provided. The power system includes: a power battery (10); a charge-discharge socket (20); a three-level bidirectional DC-AC module (30); a motor control switch (40); a charge-discharge control module (50) having a first terminal connected with an AC terminal of the three-level bidirectional DC-AC module (30) and a second terminal connected with the charge-discharge socket (20); and a control module (60) connected with a third terminal of the charge-discharge control module (50) and a third terminal of the motor control switch (40), and configured to control the charge-discharge control module (50) and the motor control switch (40) according to a current working mode of the power system.
Abstract:
A method for checking an out-of-step of a synchronous motor includes detecting three-phase currents of the synchronous motor; determining whether a relationship between the three-phase currents satisfies a preset requirement; and if no, determining that the synchronous motor is out of step. It is determined that the synchronous motor is out of step when amplitudes of each current of the three-phase currents are not equal or when the phase difference between the three-phase currents is not 120°.
Abstract:
A power system switching between charging/discharging and driving functions comprises: a power battery (10); a charging/discharging socket (20); a bi-directional DC/DC module (30); a driving control switch (40); a bi-directional DC/AC module (50); a motor control switch (60); a charging/discharging control module (70); and a controller module (80). The controller module is connected to the driving control switch, the motor control switch, and the charging/discharging control module. The controller module establishes a closed circuit between the power battery and a motor (M) when the current working mode of the power system is a drive mode, and establishes a closed circuit between the charging/discharging socket and the power battery when the current working mode of the power system is a charging/discharging mode. The power system is capable of performing large-power AC charging on an electric automobile with AC power grids for civil or industrial use, so that a user can charge the electric automobile efficiently and conveniently at any place anytime. Moreover, the power system is applicable to batteries of a wide working voltage range, the occupied space thereof is saved and the cost is low.
Abstract:
Disclosed are a carrier communication method based on electric automobile charging/discharging, comprising the following steps: S1: after being powered up and started, an electric automobile detecting whether a carrier signal from a peripheral device is received through an interface wire harness and whether the carrier signal is correct; S2: when detecting the carrier signal and detecting that the carrier signal is correct, the electric automobile receiving the carrier signal through the interface wire harness; and S3: the electric automobile performing coupling and filtering on the received carrier signal to convert the carrier signal into a standard carrier signal, and demodulating the standard carrier signal into a digital signal to obtain information of the peripheral device. The method, on the basis of not increasing the number of wire harness, may implement data transmission and sharing between an automobile and ECU modules of a peripheral device, and carrier communication with other signal lines as communication media at the same time, so as to avoid construction and investment of a new communication network, and reduce manufacturing cost and maintenance difficulty. Further disclosed are a carrier communication system and a carrier apparatus based on electric automobile charging/discharging.
Abstract:
Disclosed are an electric vehicle and a power system and a motor controller for an electric vehicle. The power system for an electric vehicle comprises a power battery (10); a charge-discharge socket (20); a two-way DC/DC module (30); a drive control switch (40); a two-way DC/AC module (50); a motor control switch (60); a charge-discharge control module (70); and a controller module (80). The controller module (80) is connected to the drive control switch (40), the motor control switch (60) and the charge-discharge control module (70), and the controller module (80) is used for controlling the drive control switch (40), the motor control switch (60) and the charge-discharge control module (70) in accordance with the current operating mode of the power system. The power system can achieve high-power AC charging to an electric vehicle using a civil or industrial AC power grid so that users can perform a quick charge at a high efficiency anytime and anywhere. In addition, the applicable battery has a wide range of operating voltages, thereby saving space and costs.
Abstract:
Disclosed are a carrier communication method based on electric automobile charging/discharging, comprising the following steps: S1: after being powered up and started, an electric automobile detecting whether a carrier signal from a peripheral device is received through an interface wire harness and whether the carrier signal is correct; S2: when detecting the carrier signal and detecting that the carrier signal is correct, the electric automobile receiving the carrier signal through the interface wire harness; and S3: the electric automobile performing coupling and filtering on the received carrier signal to convert the carrier signal into a standard carrier signal, and demodulating the standard carrier signal into a digital signal to obtain information of the peripheral device. The method, on the basis of not increasing the number of wire harness, may implement data transmission and sharing between an automobile and ECU modules of a peripheral device, and carrier communication with other signal lines as communication media at the same time, so as to avoid construction and investment of a new communication network, and reduce manufacturing cost and maintenance difficulty. Further disclosed are a carrier communication system and a carrier apparatus based on electric automobile charging/discharging.
Abstract:
A hybrid power driving system is provided, comprising an engine; a first motor; a first reducing mechanism, a second clutch, a first wheels group, a second motor, a second wheels group, a second reducing mechanism, an energy storage device, a clutch, an engine controller, and a motor controller. The motor controller may be configured to: start or stop at least one of the first motor or the second motor; and control the clutch controller and the engine controller according to a running mode of the hybrid power driving system. A driving method for the driving system as described hereinabove is also provided.
Abstract:
A hybrid power driving system is provided, comprising an engine; a first motor; a first reducing mechanism, a second clutch, a first wheels group, a second motor, a second wheels group, a second reducing mechanism, an energy storage device, a clutch, an engine controller, and a motor controller. The motor controller may be configured to: start or stop at least one of the first motor or the second motor; and control the clutch controller and the engine controller according to a running mode of the hybrid power driving system. A driving method for the driving system as described hereinabove is also provided.
Abstract:
A hybrid power driving system is provided, comprising an engine (10), a first motor (30), a first clutch (20), a first reducing mechanism (50), a second clutch (40), a first wheel group (50), a second motor (70), a second wheel group (90), a second reducing mechanism (80), an energy storage device (100), a clutch controller (110), an engine controller (120), and a motor controller (130). The motor controller (130) is configured to start or stop the first motor (20) and/or the second motor (40); and to control the clutch controller (110) and the engine controller (120) according to the corresponding running mode of the hybrid power driving system. A driving method for the driving system as described hereinabove is also provided.