Abstract:
PROBLEM TO BE SOLVED: To improve a mold or continuous casting operation in a continuous casting method and its apparatus. SOLUTION: In a thermal control method for a copper plate facing to steel of a continuous casting mold regarding different casting speeds, different copper plate thickness, different casting sizes, different water amount and different water pressure respectively, the method is characterized in that selectable mold cooling water temperature at an outlet of the mold is constantly maintained unrelated to a casting speed. Temperature of the outlet of the mold is measured and controlled by a two way type valve having a short pipe between the outlet of the mold and an inlet of the mold and a bifurcated pipe providing for partial amount of the cooling water from the outlet of the mold to a heat exchanger. Hot cooling water at the outlet of the mold is mixed with cooled water at the outlet of the mold, and cooling water amount and pressure of at the outlet of the mold, in which cooling water temperature is controlled dependent on casting condition, is also controlled. Then, molding cooling water at the outlet of the mold is circulated through the mold by a pump station so as to maintain constant temperature.
Abstract:
The invention relates to a method for optimizing the cooling capacity of a continuous casting mold (1) for liquid metals, particularly for liquid steel, by homogenizing the thermal load (22) above the height of the continuous casting mold (1). According to the method, the cooling medium (5) is guided through a cross-sectional area of a large number of cooling medium channels (3) or cooling medium boreholes (4) running approximately parallel to the cast billet (9). The cooling medium cross-sectional areas between the mold entry (6) and the mold exit (7) are configured differently. In order to homogenize the thermal mold load (22), a smaller cross-sectional area sets the flow rate of the cooling medium (5), which is conducted from the top downward, inside the cooling medium channel (3) or inside the cooling medium borehole (4) higher in the upper area of the continuous casting mold (1) than in the lower area of the continuous casting mold (1) in which the flow rate is set lower by a larger cross-sectional area and/or the covering of the cooling medium is adjusted by a cross-sectional shape that varies from the top downward.
Abstract:
The invention relates to a device for cooling the copper plates (1.1) of a continuous casting ingot mould (1) for liquid metals, especially liquid steel, comprising an ingot mould coolant (2) which is guided in cooling channels. During the initial temperature rise to achieve a set casting speed or when said casting speed is exceeded for a deviating copper plate skin temperature (8), the copper plate skin temperature (8) is influenced, even when the casting speed is higher, in such a way that surface errors in the casting shell and/or cracks in the surface of the copper plates are prevented from occurring or occur in a significantly reduced manner by adjusting the copper plate skin temperature (8) at alternating casting speeds (6) of between 1 m / min and a maximum 12 m / min by means of quantitative correction of the amount of ingot mould coolant (4) and/or ingot mould coolant inflow temperature (5) according to the casting speed (6) and according to the thickness of the copper plates (9), to a desired constant value.
Abstract:
The invention relates to a device for cooling the copper plates (1.1) of a continuous casting ingot mould (1) for liquid metals, especially liquid steel, comprising an ingot mould coolant (2) which is guided in cooling channels. During the initial temperature rise to achieve a set casting speed or when said casting speed is exceeded for a deviating copper plate skin temperature (8), the copper plate skin temperature (8) is influenced, even when the casting speed is higher, in such a way that surface errors in the casting shell and/or cracks in the surface of the copper plates are prevented from occurring or occur in a significantly reduced manner by adjusting the copper plate skin temperature (8) at alternating casting speeds (6) of between 1 m/min and a maximum 12 m/min by means of quantitative correction of the amount of ingot mould coolant (4) and/or ingot mould coolant inflow temperature (5) according to the casting speed (6) and according to the thickness of the copper plates (9), to a desired constant value.
Abstract:
The invention relates to a device for cooling the copper plates (1.1) of a continuous casting ingot mould (1) for liquid metals, especially liquid steel, comprising an ingot mould coolant (2) which is guided in cooling channels. During the initial temperature rise to achieve a set casting speed or when said casting speed is exceeded for a deviating copper plate skin temperature (8), the copper plate skin temperature (8) is influenced, even when the casting speed is higher, in such a way that surface errors in the casting shell and/or cracks in the surface of the copper plates are prevented from occurring or occur in a significantly reduced manner by adjusting the copper plate skin temperature (8) at alternating casting speeds (6) of between 1 m / min and a maximum 12 m / min by means of quantitative correction of the amount of ingot mould coolant (4) and/or ingot mould coolant inflow temperature (5) according to the casting speed (6) and according to the thickness of the copper plates (9), to a desired constant value.
Abstract:
The invention relates to a device for cooling the copper plates (1.1) of a continuous casting ingot mould (1) for liquid metals, especially liquid steel, comprising an ingot mould coolant (2) which is guided in cooling channels. During the initial temperature rise to achieve a set casting speed or when said casting speed is exceeded for a deviating copper plate skin temperature (8), the copper plate skin temperature (8) is influenced, even when the casting speed is higher, in such a way that surface errors in the casting shell and/or cracks in the surface of the copper plates are prevented from occurring or occur in a significantly reduced manner by adjusting the copper plate skin temperature (8) at alternating casting speeds (6) of between 1 m/min and a maximum 12 m/min by means of quantitative correction of the amount of ingot mould coolant (4) and/or ingot mould coolant inflow temperature (5) according to the casting speed (6) and according to the thickness of the copper plates (9), to a desired constant value.
Abstract:
Flow velocity of coolant passed down through mold channels or bores is controlled. High in the mold, where the cross sectional area is smaller, velocity is increased. Lower down, where the cross sectional area is greater, it is reduced. Alternatively or in addition, coverage by coolant is adjusted by a cross section varying with height. An Independent claim is included for the corresponding continuous casting equipment.