Abstract:
L'invention concerne un substrat de manipulation (100) pour structure composite comprenant : un substrat de base (12) constitué d'une couche épitaxiale (2) de silicium sur une tranche (1) de silicium monocristallin obtenue par tirage Czochralski, ayant une résistivité comprise entre 10 et 500 ohm.cm, ladite couche épitaxiale (2) de silicium présentant une résistivité supérieure à 2000 ohm.cm et une épaisseur allant de 2 à 100 microns, une couche (3) de passivation sur et en contact avec la couche épitaxiale (2) de silicium, ladite couche (3) de passivation étant amorphe ou polycristalline, -une couche (4) de piégeage de charge sur et en contact avec la couche (3) de passivation. L'invention concerne également un procédé de formation d'un tel substrat.
Abstract:
The invention relates to a method for manufacturing a structure comprising a first substrate (1) comprising at least one electronic component (10) likely to be damaged by a temperature higher than 400°C and a semi-conductor layer extending on said first substrate, characterised in that it comprises the following steps of: (a) providing a first bonding metal layer (11) on the first substrate (1), (b) providing a second substrate (2) comprising successively: -a semi-conductor base substrate (20), -a stack (21) of a plurality of semi-conductor epitaxial layers, a layer (210) of Si x Ge 1-x , with 0 ≤ x ≤1 being located at the surface of said stack (21) opposite to the base substrate (20),1-a second bonding metal layer (22), (c)bonding the first substrate and the second substrate through the first and second bonding metal layers(11, 22),said bonding step being carried out at a temperature lower than or equal to 400°C, (d) removing a part of the second substrate so as to transfer the layer (210) of Si x Ge 1-x on the first substrate(1), said removing comprising at least selectively chemically etching a layer of the second substrate (2) relative to the Si x Ge 1-x layer (210).
Abstract translation:本发明涉及一种用于制造结构的方法,所述结构包括第一基板(1)和第二基板(1),所述第一基板包括至少一个可能被高于400℃的温度损坏的电子部件(10) 其特征在于,它包括以下步骤:(a)在第一衬底(1)上提供第一键合金属层(11);(b)提供第二衬底(2),该第二衬底(2)依次包括: : - 半导体基础衬底(20), - 多个半导体外延层的堆叠(21),Si x x Ge 1-x层(210) 其中0≤x≤1位于所述叠层(21)的与所述基底衬底(20)相对的表面处,1-第二接合金属层(22),(c)将所述第一衬底和 通过所述第一和第二键合金属层(11,22)连接所述第二衬底,所述键合步骤在低于或等于400℃的温度下进行,(d)除去部分所述s 第二衬底,以便在第一衬底(1)上转移Si x Ge 1-x的层(210),所述去除包括至少选择性地化学蚀刻层 (2)相对于Si 1 1 sub> 1-x sub>层(210)的第一衬底(2)。 p>
Abstract:
The present invention relates to a heterostructure, in particular a piezoelectric structure, comprising a cover layer, in particular a layer of piezoelectric material, the material of the cover layer having a first coefficient of thermal expansion, assembled to a support substrate, the support substrate having a second coefficient of thermal expansion substantially different from the first coefficient of thermal expansion, at an interface wherein the cover layer comprises at least a recess extending from the interface into the cover layer, and its method of fabrication.
Abstract:
A semiconductor-on-glass substrate having a relatively stiff (e.g. relatively high Young's modulus of 125 or higher) stiffening layer or layers placed between the silicon film and the glass in order to eliminate the canyons and pin holes that otherwise form in the surface of the transferred silicon film during the ion implantation thin film transfer process. The new stiffening layer may be formed of a material, such as silicon nitride, that also serves as an efficient barrier against penetration of sodium and other harmful impurities from the glass substrate into the silicon film.
Abstract:
L'invention porte sur un procédé de report d'une couche mince (5) sur un substrat support (1) comprenant la préparation d'un substrat support (1) à l'aide d'un procédé de préparation comprenant la fourniture d'un substrat de base (3) présentant, sur une face principale, une couche de piégeage de charges (2) et la formation d'une couche diélectrique (4) présentant une épaisseur supérieure à 200nm sur la couche de piégeage de charges (2). La formation de la couche diélectrique (4) met simultanément en œuvre le dépôt et la pulvérisation ionique de la couche diélectrique. Le procédé de report comprend également l'assemblage, par adhésion moléculaire et sans préparer la face libre de la couche diélectrique (4) par polissage, d'un substrat donneur à la couche diélectrique (4) du substrat support (1), le substrat donneur présentant un plan de fragilisation définissant la couche mince (5). Le procédé comprend enfin la fracture du substrat donneur au niveau du plan de fragilisation pour libérer la couche mince (5) et la reporter sur le substrat support (1).
Abstract:
The invention relates to a method for manufacturing a semiconductor on insulator type structure by transfer of a layer from a donor substrate onto a receiver substrate, comprising the following steps: a) the supply of the donor substrate and the receiver substrate, b) the formation in the donor substrate of an embrittlement zone delimiting the layer to transfer, c) the bonding of the donor substrate on the receiver substrate, the surface of the donor substrate opposite to the embrittlement zone with respect to the layer to transfer being at the bonding interface, d) the detachment of the donor substrate along the embrittlement zone enabling the transfer of the layer to transfer onto the receiver substrate, the transfer method being characterised in that it comprises, before the bonding step, a step of controlled modification of the curvature of the donor substrate and/or the receiver substrate so as to move the substrates away from each other at least in one region of their periphery, the face or the two faces intended to form the bonding interface of the donor substrate and/or the receiver substrate being deformed so as to have a curvature amplitude (Bw) greater than or equal to 136 μm.
Abstract:
A substrate (1) for producing transistors having fully depleted channels, with the substrate comprising the following stacking: - a support (6) comprising contaminant species liable to diffuse; - a barrier layer for encapsulating (5) the support and able to prevent the diffusion of the contaminant species; - an intermediate layer (4) made of a polycrystalline or amorphous semiconductor material on the encapsulation barrier layer (5); - an electrically insulating layer (3) having a thickness ranging from 2 to 50 nanometers on the intermediate layer ( 4 ); - a semiconductive upper layer (2) having a thickness ranging from 2 to 50 nanometers on the electrically insulating layer (3) and free of contaminant species.
Abstract:
The invention relates to a method for transferring a layer of semiconductor, characterized in that it comprises the steps consisting in: -providing (E1) a donor substrate (3) comprising a useful layer (2) consisting of a semiconductor material, and a confinement structure (5), comprising a confinement layer (4), consisting of a semiconductor material, the confinement layer (4)with a chemical composition different than the useful layer (2), and two protective layers (6, 7)of semiconductor material, and with a chemical composition distinct from the confinement layer (4), the protective layers being arranged on both sides of the confinement layer (4), -introducing (E3) ions (15) int he donor substrate (3), -bonding ( E4) the donor substrate (3)and a receiver substrate (10), -subjecting (E5) the donor substrate (3) and the receiver substrate (10) to heat treatment comprising an increase in temperature, during which the confinement layer (4) attracts the ions (15) in order to concentrate them in said confinement layer (4), and -detaching (S6) the donor substrate (3) from the receiver substrate (10) by breaking at said confinement layer (4).
Abstract:
A quantum well thermoelectric component for use in a thermoelectric device based on the thermoelectric effect, • comprising a stack (1 ) of layers (3, 4) of two materials respectively made on the basis of silicon and silicon-germanium, • the first of said two materials, made on the basis of silicon, defining a barrier semiconductor material and • the second of said two materials, made on the basis of silicon-germanium, defining a conducting semiconductor material, • said barrier semiconductor material having a band gap higher than the band gap of said conducting semiconductor material, wherein • the conducting semiconductor material is an alloy comprising silicon, germanium and at least a lattice matching element, said lattice matching element(s) being present in order to control a lattice parameter mismatch between the barrier layer (3) made of the barrier semiconductor material and the conducting layer (4) made of the conducting semiconductor material.