Abstract:
A dry powder inhaler may include a drug chamber configured to contain a formulation including carrier particles and working agent particles, a mouthpiece configured to direct flow of working agent particles to a user, and a retaining member proximal the mouthpiece. The retaining member be sized and arranged to prevent flow of substantially all carrier particles to the user while permitting flow of working agent particles to a user. The inhaler may include a formulation including carrier particles for delivering working agent to the pulmonary system of a patient. The carrier particles may have an average sieve diameter greater than about 500 µm. The carrier particles may be one of polystyrene, PTFE, silicone glass, and silica gel or glass.
Abstract:
A device for coating dry powder microparticles onto a surfacemay include a jet mill configured to mill dry powder particles into microparticles having a desired aerodynamic diameter and to deaggregate the microparticles, a feed hopper structured and arranged to feed dry powder particles to the jet mill, a surface configured to receive dry powder microparticles and an exit nozzle associated with the jet mill. The exit nozzle may be arranged to direct deaggregated micronized dry powder particles from the jet mill to the surface to be coated. The device may further include a holder structured and arranged to hold an item, wherein the item includes the surface. In some aspects of the device, the item may be a film.
Abstract:
A method of method of coating powdered medical agent onto a carrier particle for use in a dry powder inhaler may include applying ultrasonic energy to agglomerated powdered medical agent to deaggregate and aerosolize particles of the medical agent into particles having a desired average particle size, and coating at least one carrier particle with a desired amount of the deaggregated and aerosolized particles of the medical agent.
Abstract:
A dry powder delivery device may be configured to provide micronized dry powder particles to airways of a user. The device may include a cylindrical container delimiting a chamber containing at least one magnetically- responsive object, a motor external to said chamber, a magnet external to the chamber and rotatably coupled with the motor, and an outflow member configured to direct airflow to a user. The magnetically-responsive object may be coated with micronized dry powder particles, and the motor may be operable to rotate the magnet about an axis. Rotation of the magnet creates a magnetic field that causes the magnetically-responsive object to move in response to the magnetic field and collide with a side wall of the container to deaggregate the dry powder particles and aerosolize the dry powder in the chamber.
Abstract:
A dry powder inhaler including a housing defining a chamber for receiving a dose of powdered medicament, an inhalation port in fluid communication with the chamber, at least one airflow inlet providing fluid communication between the chamber and an exterior of the housing, and a flutter element in the chamber and associated with a dose of powdered medicament. The flutter element has a tensioned distal end proximate the at least one airflow inlet and a free proximal end opposite to the distal end and downstream of the inlet. The flutter element is configured to vibrate in response to airflow through the chamber and aerosolize the dose of powdered medicament.
Abstract:
An inhalable dry powder formulation containing SAE-CD and an active agent is provided. The formulation is adapted for administration by DPI. The SAE-CD serves as a carrier rather than as an absorption enhancer. The average particle size of the SAE-CD is large enough to preclude (for the most part) pulmonary deposition thereof. Following release from the DPI device, the SAE-CD-containing particles dissociate from the active agent-containing particles in the buccal cavity or throat, after which the active agent-containing particles continue deeper into the respiratory tract. The physicochemical and morphological properties of the SAE-CD are easily modified to permit optimization of active agent and carrier interactions. Drugs having a positive, neutral or negative electrostatic charge can be delivered by DPI when SAE-CD is used as a carrier.
Abstract:
An apparatus for generating an aerosol of a therapeutic agent and methods of using the same are disclosed. The apparatus comprises a heating element having a surface and a composition coating at least a portion of the heating element surface. The composition comprises a carrier and a therapeutic agent, wherein when the heating element surface is heated to at least the vaporization point of the carrier, the carrier vaporizes and releases the therapeutic agent from the composition as an aerosol. The heating element can be a coiled filament. The therapeutic agent can be a small molecule, a polynucleotide, a polypeptide, or a recombinant virus. The apparatus can be incorporated into a delivery device, such as a metered dose inhaler or an exposure chamber.
Abstract:
Methods of modulating a characteristic of a pharmaceutical compound spray by acoustic measurement and control of the pharmaceutical spray are disclosed. The methods include analyzing a selected characteristic of a pharmaceutical compound spray utilizing acoustic measurement to develop corresponding acoustic data. The methods further include controlling the selected characteristic by applying acoustic excitation to the pharmaceutical compound spray in accordance with the acoustic data developed.
Abstract:
A dry powder inhaler including a housing defining a chamber for receiving a dose of powdered medicament, an inhalation port in fluid communication with the chamber, at least one airflow inlet providing fluid communication between the chamber and an exterior of the housing, and a flutter element in the chamber and associated with a dose of powdered medicament. The flutter element has a tensioned distal end proximate the at least one airflow inlet and a free proximal end opposite to the distal end and downstream of the inlet. The flutter element is configured to vibrate in response to airflow through the chamber and aerosolize the dose of powdered medicament.