Abstract:
In a substrate-level assembly (22), a device substrate (20) of semiconductor material has a top face (20a) and houses a first integrated device (1; 16), in particular provided with a buried cavity (3), formed within the device substrate (20), and with a membrane (4), suspended over the buried cavity (3) in the proximity of the top face (20a). A capping substrate (21) is coupled to the device substrate (20) above the top face (20a) so as to cover the first integrated device (1; 16), in such a manner that a first empty space (25) is provided above the membrane (4). Electrical-contact elements (28a, 28b) electrically connect the integrated device (1; 16) with the outside of the substrate-level assembly (22). In one embodiment, the device substrate (20) integrates at least a further integrated device (1', 10) provided with a respective membrane (4'); and a further empty space (25'), fluidically isolated from the first empty space (25), is provided over the respective membrane (4') of the further integrated device (1', 10).
Abstract:
In a device (2) for determining the position (P 1 (X, y) ) of a touch on a contact surface (Ia) , a plurality of vibration sensors (4) are configured to detect mechanical vibrations (9) generated by the touch on the contact surface (1a) and to generate corresponding vibration signals, and a processing circuit (6) is connected to the vibration sensors (4) and is configured to determine the touch position (P 1 (x, y) ) via a time-of-f light algorithm, based on differences between times of detection (t 1 , t 2 , t 3 ) of the mechanical vibrations (9) by the vibration sensors (4) .
Abstract:
In a device (2) for determining the position (P1(x, y) ) of a touch on a contact surface (1a), a plurality of vibration sensors (4) are configured to detect mechanical vibrations (9) generated by the touch on the contact surface (1a) and to generate corresponding vibration signals, and a processing circuit (6) is connected to the vibration sensors (4) and is configured to determine the touch position (P1 (x, y) ) via a time-of-f light algorithm, based on differences between times of detection (t1, t2, t3) of the mechanical vibrations (9) by the vibration sensors (4).
Abstract:
A substrate-level assembly having a device substrate of semiconductor material with a top face and housing a first integrated device, including a buried cavity formed within the device substrate, and with a membrane suspended over the buried cavity in the proximity of the top face. A capping substrate is coupled to the device substrate above the top face so as to cover the first integrated device in such a manner that a first empty space is provided above the membrane. Electrical-contact elements electrically connect the integrated device with the outside of the substrate-level assembly. In one embodiment, the device substrate integrates at least a further integrated device provided with a respective membrane, and a further empty space, fluidly isolated from the first empty space, is provided over the respective membrane of the further integrated device.
Abstract:
A semiconductor device includes: a substrate (2); a transduction microstructure (3) integrated in the substrate (2); a cap (5) joined to the substrate (2) and having a first face (5a) adjacent to the substrate (2) and a second, outer, face (5b); and a channel (15) extending through the cap (5) from the second face (5b) to the first face (5a) and communicating with the transduction microstructure (3). A protective membrane (17) made of porous polycrystalline silicon permeable to aeriform substances is set across the channel (15).