Abstract:
The invention relates to a process for the realisation of a high integration density power MOS device comprising the following steps of: providing a doped semiconductor substrate (10) with a first type of conductivity (N); forming, on the substrate (10), a semiconductor layer (11) with lower conductivity (N-); forming, on the semiconductor layer (11), a dielectric layer (16) of thickness comprised between 3000 and 13000 A (Angstrom); depositing, on the dielectric layer (16), a hard mask layer; masking the hard mask layer by means of a masking layer; etching the hard mask layers and the underlying dielectric layer (16) for defining a plurality of hard mask portions (19) to protect said dielectric layer (16); removing the masking layer; isotropically and laterally etching said dielectric layer forming lateral cavities in said dielectric layer (16) below said hard mask portions (19); forming a gate oxide (15) of thickness comprised between 150 and 1500 A (Angstrom) depositing a conductor material (24) in said cavities and above the same to form a recess spacer (20), which is totally aligned with a gate structure (14) comprising said thick dielectric layer (16) and said gate oxide (15).
Abstract:
A vertical power semiconductor device and corresponding realisation method, the device being integrated on a semiconductor substrate (10) and comprising respective gate (20), source (25) and drain (30) areas, realised in an epitaxial layer (40) arranged on said semiconductor substrate (10) and comprising respective gate (21), source (26) and drain (31) metallisations realised by means of a first metallisation level as well as gate (60), source (65) and drain (70) terminals or pads realised by means of a second metallisation level. The device is configured as a set of modular areas (100) extending parallel to each other, each having a rectangular elongate source area (25) perimetrically surrounded by a narrow gate area (20), and separated from each other by regions (30a) with drain area (30) extending parallel and connected at the opposite ends thereof to a second closed region (30b) with drain area (30) forming a device outer peripheral edge; as well as a sinker structure (45) extending perpendicularly to the substrate and formed by a grid of sinker (S) located below both the first parallel regions (30a) and the second closed region (30b) with drain area (30) in order to favour a conductive channel for a current coming from the source area (25) and directed towards the drain area (30) across the substrate (10).
Abstract:
A vertical power semiconductor device and corresponding realisation method, the device being integrated on a semiconductor substrate (10) and comprising respective gate (20), source (25) and drain (30) areas, realised in an epitaxial layer (40) arranged on said semiconductor substrate (10) and comprising respective gate (21), source (26) and drain (31) metallisations realised by means of a first metallisation level as well as gate (60), source (65) and drain (70) terminals or pads realised by means of a second metallisation level. The device is configured as a set of modular areas (100) extending parallel to each other, each having a rectangular elongate source area (25) perimetrically surrounded by a narrow gate area (20), and separated from each other by regions (30a) with drain area (30) extending parallel and connected at the opposite ends thereof to a second closed region (30b) with drain area (30) forming a device outer peripheral edge; as well as a sinker structure (45) extending perpendicularly to the substrate and formed by a grid of sinker (S) located below both the first parallel regions (30a) and the second closed region (30b) with drain area (30) in order to favour a conductive channel for a current coming from the source area (25) and directed towards the drain area (30) across the substrate (10).
Abstract:
Power MOS device of the type comprising a plurality of elementary power MOS transistors (2) having respective gate structures (12) and comprising a gate oxide (7) with double thickness having a thick central part (8) and lateral portions (9) of reduced thickness. Such device exhibiting gate structures (12) comprising first gate conductive portions (13) overlapped onto said lateral portions (9) of reduced thickness to define, for the elementary Mos transistors (2), the gate electrodes, as well as a conductive structure or mesh (14). Such conductive structure (14) comprising a plurality of second conductive portions (15) overlapped onto the thick central part (8) of gate oxide (7) and interconnected to each other and to the first gate conductive portions (13) by means of a plurality of conducive bridges (16). The present invention further relates to a method for realising the power MOS device.