Abstract:
Methods and apparatus for combinatorial (i.e., high-throughput) materials research, such as catalysis research, that involves parallel apparatus for simultaneously effecting mechanical treatments such as grinding, mixing, pressing, crushing, sieving, and/or fractionating of such materials are disclosed. The methods and apparatus are useful for mechanically treating catalysis materials and other solid materials, including without limitation, electronic materials such as phosphors, colorants such as pigments, and pharmaceuticals such as crystalline drugs or drug candidates. The simultaneous protocols and parallel apparatus offer substantial improvements in overall throughput for preparing arrays of materials, such as catalysis materials.
Abstract:
Methods and apparatus for combinatorial (i.e., high-throughput) materials research, such as catalysis research, that involves parallel apparatus for simultaneously effecting mechanical treatments such as grinding, mixing, pressing, crushing, sieving, and/or fractionating of such materials are disclosed. The methods and apparatus are useful for mechanically treating catalysis materials and other solid materials, including without limitation, electronic materials such as phosphors, colorants such as pigments, and pharmaceuticals such as crystalline drugs or drug candidates. The simultaneous protocols and parallel apparatus offer substantial improvements in overall throughput for preparing arrays of materials, such as catalysis materials.
Abstract:
Protocols for designing and implementing sets of simultaneous experiments, in a parallel, multi-variable process optimization reactor, are disclosed. The multi-variable process optimization reactor is preferably a parallel flow reactor having the operational capability to simultaneously vary reaction conditions between reaction vessels - either modularly or independently. The simultaneously varied reaction conditions preferably include at least two of the following, in various combinations and permutations: space velocity, contact time, temperature, pressure and feed composition. Compositional variations in the catalysts residing in each of the reaction vessels can also be investigated in the set of simultaneous experiments implemented in the parallel reactor. Sufficient data is obtained from a single set of simultaneous experiments to generate a master curve.
Abstract:
Methods and apparatus for combinatorial (i.e., high-throughput) materials research, such as catalysis research, that involves parallel apparatus for simultaneously effecting mechanical treatments such as grinding, mixing, pressing, crushing, sieving, and/or fractionating of such materials are disclosed. The methods and apparatus are useful for mechanically treating catalysis materials and other solid materials, including without limitation, electronic materials such as phosphors, colorants such as pigments, and pharmaceuticals such as crystalline drugs or drug candidates. The simultaneous protocols and parallel apparatus offer substantial improvements in overall throughput for preparing arrays of materials, such as catalysis materials.
Abstract:
Protocols for designing and implementing sets of simultaneous experiments, in a parallel, multi-variable process optimization reactor, are disclosed. The multi-variable process optimization reactor is preferably a parallel flow reactor having the operational capability to simultaneously vary reaction conditions between reaction vessels - either modularly or independently. The simultaneously varied reaction conditions preferably include at least two of the following, in various combinations and permutations: space velocity, contact time, temperature, pressure and feed composition. Compositional variations in the catalysts residing in each of the reaction vessels can also be investigated in the set of simultaneous experiments implemented in the parallel reactor. Sufficient data is obtained from a single set of simultaneous experiments to generate a master curve.