Abstract:
Methods and apparatus for combinatorial (i.e., high-throughput) materials research, such as catalysis research, that involves parallel apparatus for simultaneously effecting mechanical treatments such as grinding, mixing, pressing, crushing, sieving, and/or fractionating of such materials are disclosed. The methods and apparatus are useful for mechanically treating catalysis materials and other solid materials, including without limitation, electronic materials such as phosphors, colorants such as pigments, and pharmaceuticals such as crystalline drugs or drug candidates. The simultaneous protocols and parallel apparatus offer substantial improvements in overall throughput for preparing arrays of materials, such as catalysis materials.
Abstract:
This invention provides an apparatus and method for dispensing fluidic materials involving the employment of a hydrophilic capillary dimensioned for drawing a liquid therein in a volume less than about 10 microliters; a hydrophobic medium sealingly adjoining said capillary and defining an interface therewith for resisting flow of the liquid into the capillary beyond the interface; and a source of a pressure pulse for ejecting fluids drawn into the capillary.
Abstract:
A method for analyzing a fluid contained within a machine, comprising the steps of providing a machine system (100) including a passage (104) for containing a fluid; placing a sensor (106) including a mechanical resonator in the passage; operating the resonator to have a portion thereof translate through the fluid; and monitoring the response of the resonator to the fluid in the passage. One specific sensor includes a tuning fork resonator.
Abstract:
This invention provides an apparatus and method for dispensing fluidic materials involving the employment of a hydrophilic capillary (24) dimensioned for drawing a liquid therein in a volume less than about 10 microliters; a hydrophobic medium (26) sealingly adjoining said capillary (24) and defining an interface (22) therewith for resisting flow of the liquid into the capillary beyond the interface; and a source of a pressure pulse for ejecting fluids drawn into the capillary (24).
Abstract:
Protocols for designing and implementing sets of simultaneous experiments, in a parallel, multi-variable process optimization reactor, are disclosed. The multi-variable process optimization reactor is preferably a parallel flow reactor having the operational capability to simultaneously vary reaction conditions between reaction vessels - either modularly or independently. The simultaneously varied reaction conditions preferably include at least two of the following, in various combinations and permutations: space velocity, contact time, temperature, pressure and feed composition. Compositional variations in the catalysts residing in each of the reaction vessels can also be investigated in the set of simultaneous experiments implemented in the parallel reactor. Sufficient data is obtained from a single set of simultaneous experiments to generate a master curve.
Abstract:
Apparatus (1) for aspirating and dispensing powder, comprising a hopper (9) having a powder transfer port (11) and a suction port (13) for connection to a source of suction to establish an upward flow of air (or other gas) through the transfer port. A gas flow control system (1+) varies the upward flow through the transfer port to have different velocities greater than 0.0 m/s. These velocities include an aspirating velocity for aspirating powder into the hopper (9) through the transfer port (11) to form a fluidized bed of powder in the hopper, and a dispensing velocity less than the aspirating velocity but sufficient to maintain fluidization of the bed while allowing powder from the bed to gravitate through the transfer port for dispensing into one or more destination receptacles. A method of aspirating and dispensing powder is also disclosed. As well as a method of preparing a sample by mixing two or more different powders.
Abstract:
A method for analyzing a fluid contained within a machine, comprising the steps of providing a machine system (100) including a passage (104) for containing a fluid; placing a sensor (106) including a mechanical resonator in the passage; operating the resonator to have a portion thereof translate through the fluid; and monitoring the response of the resonator to the fluid in the passage. One specific sensor includes a tuning fork resonator.
Abstract:
Protocols for designing and implementing sets of simultaneous experiments, in a parallel, multi-variable process optimization reactor, are disclosed. The multi-variable process optimization reactor is preferably a parallel flow reactor having the operational capability to simultaneously vary reaction conditions between reaction vessels - either modularly or independently. The simultaneously varied reaction conditions preferably include at least two of the following, in various combinations and permutations: space velocity, contact time, temperature, pressure and feed composition. Compositional variations in the catalysts residing in each of the reaction vessels can also be investigated in the set of simultaneous experiments implemented in the parallel reactor. Sufficient data is obtained from a single set of simultaneous experiments to generate a master curve.
Abstract:
A novel gas injection valve for injecting discrete charges of gas into a mobile phase or carrier stream is provided. Injection valves of the invention comprise a plurality of microvalves capable of receiving gas at different pressures and emitting discrete charges of gas at approximately the same pressure. The invention further provides for parallel injection valve arrays capable of injecting multiple samples substantially simultaneously and a method of injecting discrete gas samples at a controlled pressure to a high-resolution gas chromatograph.