Abstract:
An external nonvolatile memory device that includes a rewritable nonvolatile memory and a CMOS interface is disclosed. The interface includes a clock signal which is input to the external nonvolatile memory device. This clock signal is multiplied by an integer to create a memory serdes clock which is used to clock outgoing data. The memory serdes clock is also used to create a clock that is used to clock the incoming data from the main processing device. The external nonvolatile memory device also includes an encryption/decryption block that encrypts data read from the nonvolatile memory before it is transmitted over the interface, and decrypts data received from the interface before storing it in the nonvolatile memory. The encryption/decryption block may utilize a stream cipher.
Abstract:
A configurable clock buffer including first and second buffers and isolation circuitry. The first buffer has an input coupled to a clock input node and has an output coupled to a clock output node. The second buffer has an input coupled to an intermediate input node and has an output coupled to an intermediate output node. The isolation circuitry is responsive to at least one mode signal, in which it electrically couples the intermediate input node to the clock input node and electrically couples the intermediate output node to the clock output node when the at least one mode signal is in a first state, and in which it electrically couples the intermediate input node to a static node and electrically isolates the intermediate output node from the clock output node when the at least one mode signal is in a second state.
Abstract:
A system for communicating information includes one device that communicates information via a communication link. The system also includes a second device to communicate information via the communication link. The second device includes a receiver to receive information from the communication link. The second device also includes an oscillator that provides at least one timing signal to the receiver. The oscillator is disabled when the communication link is in an idle state. The oscillator is enabled when the communication link is in a non-idle state.
Abstract:
A configurable clock buffer including first and second buffers and isolation circuitry. The first buffer has an input coupled to a clock input node and has an output coupled to a clock output node. The second buffer has an input coupled to an intermediate input node and has an output coupled to an intermediate output node. The isolation circuitry is responsive to at least one mode signal, in which it electrically couples the intermediate input node to the clock input node and electrically couples the intermediate output node to the clock output node when the at least one mode signal is in a first state, and in which it electrically couples the intermediate input node to a static node and electrically isolates the intermediate output node from the clock output node when the at least one mode signal is in a second state.
Abstract:
An apparatus includes a detector to detect an idle state of a communication link that communicates bursts or packets of information. The apparatus also includes an oscillator having low-power and normal modes of operation. The oscillator makes a transition to the low-power mode during the idle state of the communication link. The oscillator leaves the low-power mode of operation and enters the normal mode of operation when the communication link is in a non-idle state.
Abstract:
An LCD controller includes a charge pump circuit for generating a charge voltage responsive to an external voltage and a clock signal. An oscillator generates the clock signal responsive to at least one bias voltage. The oscillator has a high power mode of operation and a low power mode of operation. Bias circuitry for applies the at least one bias voltage to the oscillator. The at least one bias voltage is applied to the oscillator from an external source in the high power mode of operation and the at least one bias voltage is applied to the oscillator from a source within the oscillator in the low power mode of operation. An LCD driver voltage circuit generates a plurality of LCD driver voltages for driving segments of an LCD display responsive to the charge voltage.
Abstract:
An interface between two devices is disclosed. To consume power, the signals used in the interface utilize CMOS signalling. Further, to achieve high speed, a reduced frequency clock is transmitted from one device to the second device. The second device has a clock multiplier to recreate the original clock. Both devices utilize a clock phase alignment block which aligns the phase of the clock with the incoming data. The clock phase alignment block utilizes a digital PLL to consume power. Further, since the digital PLL retains its state, the reduced frequency clock may be disabled when data is not being transmitted. This interface may be used to transmit serial data at rates up to and exceeding 2.5 Gbits/sec.
Abstract:
In one example, an apparatus includes: a radio frequency (RF) receiver to receive an RF signal; a media access control (MAC) circuit to receive data and output MAC-processed data according to a clock signal that is phase delayed with respect to a source clock signal when the RF receiver is active; and an interference mitigation circuit to receive the MAC-processed data and provide the MAC-processed data to a physical circuit resynchronized to the source clock signal.
Abstract:
An apparatus includes a communication circuit coupled to a communication link, a wakeup detector, and a power control circuit. The communication circuit has a first state and a second state. The power consumption of the communication circuit is lower in the second state than in the first state. The wakeup detector is coupled to the communication link. The wakeup detector generates a wakeup signal to cause the communication circuit to make a transition from the second state to the first state in response to an occurrence of an event on the communication link. The power control circuit selectively supplies power to the communication circuit in response to the wakeup signal.
Abstract:
In some embodiments, a circuit may include a plurality of peripherals and a peripheral watchdog timer circuit coupled to at least one of the plurality of peripherals. The peripheral watchdog timer circuit may be configured to count clock cycles and concurrently to detect activity associated with at least one of the plurality of peripherals. The peripheral watchdog timer circuit may be configured to reset a count in response to detecting the activity. In some embodiments, the peripheral watchdog timer circuit may be configured to generate an alert signal when the count exceeds a threshold count before detecting the activity. In some embodiments, the peripheral watchdog timer circuit is configured to initiate a reset operation when the alert is not serviced within a period of time.