Abstract:
An anode plate 40 for use in a field emission flat panel display device comprises a transparent planar substrate 42 having a plurality of electrically conductive, parallel stripes 46 comprising the anode electrode of the device, which are covered by phosphors 48 R , 48 G and 48 B , and a gettering material 52 in the interstices of the stripes 46. The gettering material 52 is preferably selected from among zirconiumvanadium-iron and barium. The getter 52 may be thermally reactivated by passing a current through it at selected times, or by electron bombardment from microtips on the emitter substrate. The getter 52 may be formed on a substantially opaque, electrically insulating material 50 affixed to substrate 42 in the spaces formed between conductors 46, which acts as a barrier to the passage of ambient light into and out of the device. Methods of fabricating the getter stripes 52 on the anode plate 40 are disclosed.
Abstract:
A system for statically and dynamically testing an integrated circuit die in wafer form at various temperatures includes a multilayer support fixture 10 in which the probes 50, the static test switching circuitry, and the dynamic test switching circuitry are mounted on separate, spaced apart, planar layers detachably connected to one another, the probe 50 and the probe support board 40 being formed of material having a low temperature coefficient of thermal expansion. A heated/cooled wafer positioning chuck 12 controls the temperature of the wafer 14 thereon during static and dynamic testing.
Abstract:
A method of preparing a surface for and forming a thin film on a single-crystal silicon substrate is disclosed. One embodiment of his method comprises forming an oxidized silicon layer (which may be a native oxide) on at least one region of the substrate, and thermally annealing the substrate in a vacuum while supplying a silicon-containing flux to the oxide surface, thus removing the oxidized silicon layer. Preferably, the thin film is formed immediately after removal of the oxidized silicon layer. The silicon-containing flux is preferably insufficient to deposit a silicon-containing layer on top of the oxidized silicon layer, and yet sufficient to substantially inhibit an SiO-forming reaction between the silicon substrate and the oxidized silicon layer. The method of the invention allows for growth or deposition of films which have exceptionally smooth interfaces (less than 0.1 nm rms roughness) with the underlying silicon substrate at temperatures less than 800°C, and is ideally suited for deposition of ultrathin films having thicknesses less than about 5 nm.
Abstract:
A method of cleaning and treating a device, including those of the micromechanical (10) and semiconductor type. The surface of a device, such as the landing electrode (22) of a digital micromirror device (10), is first cleaned with a supercritical fluid (SCF) in a chamber (50) to remove soluble chemical compounds, and then maintained in the SCF chamber until and during the subsequent passivation step. Passivants including PFDA and PFPE are suitable for the present invention. By maintaining the device in the SCF chamber, and without exposing the device to, for instance, the ambient of a clean room, organic and inorganic contaminants cannot be deposited upon the cleaned surface prior to the passivation step. The present invention derives technical advantages by providing an improved passivated surface that is suited to extend the useful operation life of devices, including those of the micromechanical type, reducing stiction forces between contacting elements such as a mirror and its landing electrode. The present invention is also suitable for cleaning and passivating other surfaces including a surface of semiconductor wafers, and the surface of a hard disk memory drive.
Abstract:
A method of forming of a monomolecular layer (monolayer) (19) for surfaces of contacting elements (17) of a micro-mechanical device (10). The method includes providing a coordinating substance on the surface of one of the contacting elements (13), then depositing a precursor substance (51) for formation of the monolayer (19). The coordinating substance (33) and the precursor substance (51) are chosen based on molecular recognition chemistry.
Abstract:
CMOS and BiCMOS structures with a silicate-germanate gate dielectric on SiGe PMOS areas and Si NMOS areas plus HBTs with Si-SiGe emitter-base junctions.
Abstract:
This invention pertains generally to forming thin oxides at low temperatures, and more particularly to forming uniformly thick, thin oxides. We disclose a low temperature method for forming a thin, uniform oxide 16 on a silicon surface 12. This method includes providing a partially completed integrated circuit on a semiconductor substrate 10 with a clean, hydrogen terminated or atomically flat, silicon surface 12; and stabilizing the substrate at a first temperature. The method further includes exposing the silicon surface to an atmosphere 14 including ozone, while maintaining the substrate 10 at the first temperature. In this method, the exposing step creates a uniformly thick, oxide film 16. This method is suitable for room temperature processing.