Abstract:
This invention relates to a process for separating one or more products from a reaction product fluid comprising a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more products, one or more nonpolar reaction solvents and one or more polar reaction solvents, wherein said process comprises (1) subjecting said reaction product fluid to fractional countercurrent extraction with at least two immiscible extraction solvents, said at least two immiscible extraction solvents comprising at least one nonpolar extraction solvent and at least one polar extraction solvent, to obtain a nonpolar phase comprising said metal-organophosphorus ligand complex catalyst, said optionally free organophosphorus ligand, said one or more nonpolar reaction solvents and said at least one nonpolar extraction solvent and a polar phase comprising said one or more products, said one or more polar reaction solvents and said at least one polar extraction solvent, and (2) recovering said polar phase from said nonpolar phase; wherein (i) the organophosphorus ligand has a partition coefficient Kp1 defined herein between the nonpolar phase and the polar phase of greater than about 5, and (ii) the one or more products have a partition coefficient Kp2 defined herein between the nonpolar phase and the polar phase of less than about 2.0.
Abstract:
This invention relates to a process for separating one or more products from a reaction product fluid comprising a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more products, one or more polar reaction solvents and one or more nonpolar reaction solvents, wherein said process comprises (1) subjecting said reaction product fluid to fractional countercurrent extraction with at least two immiscible extraction solvents, said at least two immiscible extraction solvents comprising at least one polar extraction solvent and at least one nonpolar extraction solvent, to obtain a polar phase comprising said metal-organophosphorus ligand complex catalyst, said optionally free organophosphorus ligand, said one or more polar reaction solvents and said at least one polar extraction solvent and a nonpolar phase comprising said one or more products, said one or more nonpolar reaction solvents and said at least one nonpolar extraction solvent, and (2) recovering said nonpolar phase from said polar phase; wherein (i) the organophosphorus ligand has a partition coefficient Kp1 defined herein between the polar phase and the nonpolar phase of greater than about 5, and (ii) the one or more products have a partition coefficient Kp2 defined herein between the polar phase and the nonpolar phase of less than about 2.0.
Abstract:
This invention relates to a process for separating one or more orgnnophosphorus ligand degradation products, one or more reaction byproducts and one or more formylester products from a reaction product fluid comprising one or more unreacted unsaturated ester reactants, a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more organophosphorus ligand degradation products, said one or more reaction byproducts, said one or more products, a polar solvent and a nonpolar solvent by phase separation wherein (i) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more products is expressed by a partition coefficient ratio Ef1 which is a value greater than about 2.5, (ii) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more organophosphorus ligand degradation products is expressed by a partition coefficient ratio Ef2 which is a value greater than about 2.5, and (iii) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more reaction byproducts is expressed by a partition coefficient ration Ef3 which is a value greater than about 2.5.
Abstract:
This invention relates to a process for separating one or moer organophosphorus ligand degradation products, one or more reaction byproducts and one or more products from a continuously generated reaction product fluid comprising one or more unreacted reactants, a metal-organophosphous ligand complex catalyst, optionally free organophosphorus ligand, said one or more organophosphorus ligand degradation products, said one or more reaction byproducts, said one or more products, one or more polar solvents and one or more nonpolar solvent by phase separation wherein (i) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more products is expressed by a partition coefficient ratio Efl which is a value greater than about 2.5, (ii) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more organophosphorus ligand degradation products is expressed by a partition coefficient ratio Ef2 which is a value greater than about 2.5, and (iii) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more reaction byproducts is expressed by a partition coefficient ratio Ef3 which is a value greater than about 2.5.
Abstract:
This invention relates to a process for separating one or more organophosphorus ligand degradation products, one or more reaction byproducts and one or more products from a continuously generated reaction product fluid comprising one or more unreacted reactants, a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more organophosphorus ligand degradation products, said one or more reaction byproducts, said one or more products, one or more nonpolar solvents and one or more polar solvents by phase separation wherein (i) the selectivity of the nonpolar phase for the organophosphorus ligand with respect to the one or more products is expressed by a partition coefficient ratio Ef1 which is a value greater than about 2.5, (ii) the selectivity of the nonpolar phase for the organophosphorus ligand with respect to the one or more organosphosphorus ligand degradation products is expressed by a partition coefficient ratio Ef2 which is a value greater than about 2.5, and (iii) the selectivity of the nonpolar phase for the organophosphorus ligand with respect to the one or more reaction byproducts is expressed by a partition coefficient ratio Ef3 which is a value greater than about 2.5.
Abstract:
This invention relates to a process for separating one or more organophosphorus ligand degradation products, one or more reaction byproducts and one or more products from a continuously generated reaction product fluid comprising one or more unreacted reactants, a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more organophosphorus ligand degradation products, said one or more reaction byproducts, said one or more products, one or more polar solvents and one or more nonpolar solvents by phase separation wherein (i) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more products is expressed by a partition coefficient ratio Ef1 which is a value greater than about 2.5, (ii) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more organophosphorus ligand degradation products is expressed by a partition coefficient ratio Ef2 which is a value greater than about 2.5, and (iii) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more reaction byproducts is expressed by a partition coefficient ratio Ef3 which is a value greater than about 2.5.
Abstract:
This invention relates to novel copolymers based on the copolymerization product of hydroxyl (meth)acrylate esters and (meth)acrylate esters of hydroxyalkyl carbamates; and other homopolymers and copolymers base on (meth)acrylate esters. In addition, novel copolymer blends may be formulated from individual copolymers based on hydroxyl (meth)acrylate esters and individual (meth)acrylate esters of hydroxyalkyl carbamates. Mixtures including crosslinking agents may be used to provide curable copolymer or copolymer-blend coating compositions.
Abstract:
This invention relates to a process for separating one or more organophosphorus ligand degradation products, one or more reaction byproducts and one or more formylester products from a reaction product fluid comprising one or more unreacted unsaturated ester reactants, a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more organophosphorus ligand degradation products, said one or more reaction byproducts, said one or more products, a polar solvent and a nonpolar solvent by phase separation wherein(i) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more products is expressed by a partition coefficient ratio Ef1 which is a value greater than about 2.5, (ii) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more organophosphorus ligand degradation products is expressed by a partition coefficient ratio Ef2 which is a value greater than about 2.5, and (iii) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more reaction byproducts is expressed by a partition coefficient ratio Ef3 which is a value greater than about 2.5.
Abstract:
This invention relates to a process for separating one or more organophosphorus ligand degradation products, one or more reaction byproducts and one or more products from a continuously generated reaction product fluid comprising one or more unreacted reactants, a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more organophosphorus ligand degradation products, said one or more reaction byproducts, said one or more products, one or more nonpolar solvents and one or more polar solvents by phase separation wherein (i) the selectivity of the nonpolar phase for the organophosphorus ligand with respect to the one or more products is expressed by a partition coefficient ratio Ef1which is a value greater than about 2.5, (ii) the selectivity of the nonpolar phase for the organophosphorus ligand with respect to the one or more organophosphorus ligand degradation products is expressed by a partition coefficient ratio Ef2 which is a value greater than about 2.5, and (iii) the selectivity of the nonpolar phase for the organophosphorus ligand with respect to the one or more reaction byproducts is expressed by a partition coefficient ratio Ef3 which is a value greater than about 2.5.
Abstract:
This invention relates to a process for separating one or more organophosphorus ligand degradation products, one or more reaction byproducts and one or more formylester products from a reaction product fluid comprising one or more unreacted unsaturated ester reactants, a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more organophosphorus ligand degradation products, said one or more reaction byproducts, said one or more products, a polar solvent and a nonpolar solvent by phase separation wherein(i) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more products is expressed by a partition coefficient ratio Ef1 which is a value greater than about 2.5, (ii) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more organophosphorus ligand degradation products is expressed by a partition coefficient ratio Ef2 which is a value greater than about 2.5, and (iii) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more reaction byproducts is expressed by a partition coefficient ratio Ef3 which is a value greater than about 2.5.