Abstract:
Nanosubstrates as biosensors, methods of making such nanosubstrates, and methods of using such nanosubstrates to detect biomarkers are described.
Abstract:
A variety of homogeneous or layered hybrid nanostructures are fabricated by electric field-directed assembly of nanoelements. The nanoelements and the fabricated nanostructures can be conducting, semi-conducting, or insulating, or any combination thereof. Factors for enhancing the assembly process are identified, including optimization of the electric field and combined dielectrophoretic and electrophoretic forces to drive assembly. The fabrication methods are rapid and scalable. The resulting nanostructures have electrical and optical properties that render them highly useful in nanoscale electronics, optics, and biosensors.
Abstract:
A method for high rate assembly of nanoelements into two-dimensional void patterns on a non-conductive substrate surface utilizes an applied electric field to stabilize against forces resulting from pulling the substrate through the surface of a nanoelement suspension. The electric field contours emanating from a conductive layer in the substrate, covered by an insulating layer, are modified by a patterned photoresist layer, resulting in an increased driving force for nanoelements to migrate from a liquid suspension to voids on a patterned substrate having a non-conductive surface. The method can be used for the production of microscale and nanoscale circuits, sensors, and other electronic devices.
Abstract:
A variety of homogeneous or layered hybrid nanostructures are fabricated by electric field-directed assembly of nanoelements. The nanoelements and the fabricated nanostructures can be conducting, semi-conducting, or insulating, or any combination thereof. Factors for enhancing the assembly process are identified, including optimization of the electric field and combined dielectrophoretic and electrophoretic forces to drive assembly. The fabrication methods are rapid and scalable. The resulting nano structures have electrical and optical properties that render them highly useful in nanoscale electronics, optics, and biosensors.
Abstract:
A method for high rate assembly of nanoelements into two-dimensional void patterns on a non-conductive substrate surface utilizes an applied electric field to stabilize against forces resulting from pulling the substrate through the surface of a nanoelement suspension. The electric field contours emanating from a conductive layer in the substrate, covered by an insulating layer, are modified by a patterned photoresist layer, resulting in an increased driving force for nanoelements to migrate from a liquid suspension to voids on a patterned substrate having a non-conductive surface. The method can be used for the production of microscale and nanoscale circuits, sensors, and other electronic devices.