Abstract:
A single-walled carbon nanotube-based micron scale multiplex biosensor is provided that enables the detection of glucose, lactate, and urea. The sensor is based on modification of semiconducting single-walled carbon nanotubes using a linker that non-covalently associates with the nanotubes and covalently couples to an enzyme. Reaction of a physiological substrate with the enzyme results in increased resistance of the nanotubes within the sensor. The sensor is suitable for use in patient monitoring, particularly in a clinical setting. Incorporation of read out electronics and an RF signal generator into the sensor device enables it to communicate to a relay station or remote receiver. Methods are also provided for fabricating the biosensor device and using the device for detection.
Abstract:
A carbon nanotube-based micron scale chemical sensor or sensor array is provided that enables the remote detection of hydrogen sulfide and other chemicals in a gas stream. The sensor is suitable for use in harsh environments of high temperature and pressure such as those encountered during petrochemical exploration and recovery. Multiplex sensor devices detect two or more chemical agents simultaneously, or they can detect conditions such as pressure, salinity, humidity, pH, or scale-forming ions. Incorporation of read out electronics and an RF signal generator into the sensor device enables it to communicate to a relay station or receiver for 3D mapping or other analysis. Methods are also provided for fabricating the chemical sensor device and using the device for detection.
Abstract:
A non-volatile bistable nano-electromechanical switch is provided for use in memory devices and microprocessors. The switch employs carbon nanotubes as the actuation element. A method has been developed for fabricating nanoswitches having one single-walled carbon nanotube as the actuator. The actuation of two different states can be achieved using the same low voltage for each state.
Abstract:
The present invention provides methods and tools for directed assembly of nanoelements across a large area using a nanosubstrate. The nanosubstrate has a substrate layer, an adhesive layer, a conductive layer, and an insulating layer that is interrupted by one or more nanotrenches or nanowells having a width of at least 20 nm. The nanosubstrate allows the rapid assembly of linear assemblies and arrays of single walled carbon nanotubes and nanoparticles by DC electrophoresis. The density of nanoelements assembled can be controlled by varying the voltage and trench size. Functionalized nanoparticles can be assembled into arrays useful, e.g., as biosensors.
Abstract:
Nanosubstrates as biosensors, methods of making such nanosubstrates, and methods of using such nanosubstrates to detect biomarkers are described.
Abstract:
An immunosensing device includes a hub mountable to a device for fluid collection, such as a syringe, sample collection container, or vacuum collection container, and a biosensor mounted to the hub. The biosensor includes a biosensor active area in fluid communication with a fluid passage within the hub. The biosensor active area includes nanoelements functionalized with one or more antibodies or antigen binding fragments thereof for contact with a fluid in the fluid passage. The biosensor active area can include multiple regions each including nanoelements functionalized with a different antibody or antigen binding fragment thereof to detect multiple biomarkers. The biosensor, separately or attached to the hub, can be inserted in a biomarker reader for detection of a biomarker in the fluid.
Abstract:
A technique for rapid large-scale assembly of monolayers and multilayers of nanoelements on a variety of different substrates is provided. The technique is based on self-assembly of nanoelements suspended at the interface between a polar solvent and a nonpolar solvent. The layer of nanoelements is collected onto a substrate at a shallow angle, forming a continuous monolayer or multilayer of nanoparticles which can be optionally patterned or can be transferred to other substrates to form components of nanoelectronics, optical devices, and sensors.
Abstract:
A variety of homogeneous or layered hybrid nanostructures are fabricated by electric field-directed assembly of nanoelements. The nanoelements and the fabricated nanostructures can be conducting, semi-conducting, or insulating, or any combination thereof. Factors for enhancing the assembly process are identified, including optimization of the electric field and combined dielectrophoretic and electrophoretic forces to drive assembly. The fabrication methods are rapid and scalable. The resulting nanostructures have electrical and optical properties that render them highly useful in nanoscale electronics, optics, and biosensors.
Abstract:
A variety of homogeneous or layered hybrid nanostructures are fabricated by electric field-directed assembly of nanoelements. The nanoelements and the fabricated nanostructures can be conducting, semi-conducting, or insulating, or any combination thereof. Factors for enhancing the assembly process are identified, including optimization of the electric field and combined dielectrophoretic and electrophoretic forces to drive assembly. The fabrication methods are rapid and scalable. The resulting nano structures have electrical and optical properties that render them highly useful in nanoscale electronics, optics, and biosensors.
Abstract:
A method for high rate assembly of nanoelements into two-dimensional void patterns on a non-conductive substrate surface utilizes an applied electric field to stabilize against forces resulting from pulling the substrate through the surface of a nanoelement suspension. The electric field contours emanating from a conductive layer in the substrate, covered by an insulating layer, are modified by a patterned photoresist layer, resulting in an increased driving force for nanoelements to migrate from a liquid suspension to voids on a patterned substrate having a non-conductive surface. The method can be used for the production of microscale and nanoscale circuits, sensors, and other electronic devices.