Abstract:
An exemplary embodiment discloses an imprint lithography method including: forming a first imprint pattern on a base substrate in a first area; forming a first resist pattern on the base substrate in a second area, the second area partially overlapping the first area; etching a third area using the first imprint pattern and the first resist pattern as an etch barrier, wherein the third area is a portion of the first area that is not overlapped with the second area; removing the first imprint pattern and the first resist pattern; forming a second imprint pattern on the base substrate in a fourth area which overlaps the second area and partially overlaps the third area; forming a second resist pattern on the base substrate in the third area; and etching the second area using the second imprint pattern and the second resist pattern as an etch barrier.
Abstract:
An exemplary embodiment discloses an imprint lithography method including: forming a first imprint pattern on a base substrate in a first area; forming a first resist pattern on the base substrate in a second area, the second area partially overlapping the first area; etching a third area using the first imprint pattern and the first resist pattern as an etch barrier, wherein the third area is a portion of the first area that is not overlapped with the second area; removing the first imprint pattern and the first resist pattern; forming a second imprint pattern on the base substrate in a fourth area which overlaps the second area and partially overlaps the third area; forming a second resist pattern on the base substrate in the third area; and etching the second area using the second imprint pattern and the second resist pattern as an etch barrier.
Abstract:
A novel microfluidic chip is proposed for performing a chemical or biochemical test in a metered reaction volume. The microfluidic chip has a body which defines an inner flow volume. An inlet has been provided to the body for connecting the inner flow volume to the ambient space. A waste channel forms part of the inner flow volume and is in fluid communication with the inlet. A sample channel also forms part of the inner flow volume and is in fluid communication with the inlet. The sample channel includes a first hydrophobic stop and a second hydrophobic stop at a distance from the first hydrophobic stop so as to provide a metered reaction volume there between. An expelling channel is in fluid communication with the metered reaction volume of the sample channel through the first hydrophobic stop. A sample reservoir is in fluid communication with the metered reaction volume of the sample channel through the second hydrophobic stop.
Abstract:
PURPOSE: An imprint resistor solution is provided to facilitate the separation of a mold for imprint as gas is created from a gas generation agent, thereby simplifying a process since a surface treatment process of the mold for imprint is unnecessary. CONSTITUTION: An imprint resistor solution comprises 85~97 wt% of liquid polymer precursors, 1~5 wt% thermal initiator, 1~5 wt% photoinitiator, and 1~5wt% of gas generation agents generating gas in the separation of a mold for imprint and a substrate. The gas generation agent includes a ketone compound or an isocyanate compound. The ketone compound is obtained from hydrocarbon compounds including a carbonyl group less than carbon number 10. The isocyanate compound is obtained from methylene diphenyl diisocyanate, toluene diisocyanate, hexamethylene diisocyanate, or isophorone diisocyanate.