Abstract:
진동 영역의 양 끝을 감싸는 형상으로 형성된 지지부를 포함하는 진동 소자 및 그 제조 방법이 개시된다. 진동 소자는 상부에 절연층이 형성된 하부 기판; 상기 절연층의 위에 결합되며, 하부 기판과 일정 거리 이상 이격되어 진동하는 진동 영역을 포함하는 상부 기판; 및 상기 진동 영역의 양끝을 감싸는 형태로 형성되어 상기 진동 영역을 지지하는 지지부를 포함할 수 있다.
Abstract:
Disclosed is a light source output device capable of increasing the output of a light source. The light source output device includes a pulse generator which generates a plurality of optical pulses; a pulse distributor which distributes the optical pulses generated by the pulse generator on a time domain; and an optical coupler which makes the distributed optical pulses to progress in one path. Also, the light source output device further includes an optical amplifier which amplifies the output amplitude of the optical pulses outputted from the optical coupler; a pulse separator which separates the optical pulses amplified by the optical amplifier by corresponding wavelength; and a time delay unit which delays each of the optical pulses separated by wavelength to reach a coupling point at the same point of time. The pulse coupler generates a strengthened optical output by combining the optical pulses which reach the coupling point at the same point of time.
Abstract:
PURPOSE: A manufacturing method of a filter and a manufactured filter thereby are provided to have improved antibacterial, by including graphene particles evenly dispersed and adhered on the polymer nano fiber fabric, to be advantageous on controlling the differential pressure which is a required element of the filter manufacture, to form patterns on the surface of a filter by forming various patterns on the surface of the current collector, and not to necessitate extra processes for manufacturing in 3D form. CONSTITUTION: A manufacturing method of a filter comprises the following steps: a step(S10) of manufacturing solution containing graphene oxide or graphene; a step(S20) of manufacturing graphene-polymer mixed solution by mixing the solution containing graphene oxide or graphene and polymer; a step(S30) of manufacturing conductive current collector in 3D form; a step(S40) of forming 3D graphene-polymer complex filter by electro-spinning the mixed solution to the surface of the current collector; and a step(S50) of separating the 3D graphene-polymer complex filter from the current collector. The manufacturing step of the solution containing graphene or graphene oxide comprises the dispersion of the graphene particles or graphene oxide particles to the solvent. The filter has a 3D structure including a side connected from the bottom and the bottom side, and includes a polymer nano fabric and the graphene particles or the graphene oxide particles adhered polymer nano fabric. [Reference numerals] (AA) Start; (BB) End; (S10) Manufacturing a solution containing graphene oxide or a solution containing graphene; (S20) Manufacturing a graphene-polymer mixed solution; (S30) Manufacturing a 3D conductive current collector; (S40) Electro-spinning a mixed solution to the current collector; (S50) Separating the 3D graphene-polymer complex filter from the current collector;
Abstract:
PURPOSE: An unrestraint wearable type respiratory failure alarm device and method are provided to easily detect whether respiratory failure is generated or not by minimally restraining the action of a user and estimating the change of a breathing rate of the user. CONSTITUTION: A resistance-voltage conversion unit(121) changes a resistance value offered from a chest circumference measuring unit into an analog voltage value. An A/D converter(123) changes the analog voltage value changed in the resistance-voltage conversion unit into a digital value and digitalizes the digital value. A cross section volume calculation unit(125) calculates cross section volume of a chest by using the digitalized digital value. A breathing rate calculation unit(127) calculates a breathing rate of a user through the calculated cross section volume. A respiratory failure sensor(129) monitors the change of the breathing rate.
Abstract:
PURPOSE: A manufacturing method of a nano wire porous media is provided to form more pores more easily, thereby more easily and simply manufacturing the nano wire porous media, and improving flexibility and durability. CONSTITUTION: A manufacturing method of a nano wire porous media comprises: a step of forming nano wire solution and polymer solution respectively; a step of forming a first mixture solution by mixing the nano wire solution and the polymer solution; a step of forming a second mixture solution including many bubbles by mixing and stirring water and organic solvent; a step of forming a third mixture solution by mixing and stirring the first and the second mixture solution; and a step of forming the nano wire porous media by freezing and drying the third mixture solution; and additionally comprises a step of surface-treating the nano wire porous media by using plasma.
Abstract:
본 발명은 외부구동없이 모세관력을 이용하에 자체적으로 전혈로부터 혈장을 분리할 수 있는 마이크로 필터 소자에 관한 것으로, 이를 위해 본 발명은 전혈이 유입되는 전혈유입구; 유입된 전혈로부터 분리된 혈장이 외부로 방출되는 혈장방출구; 상기 전혈유입구 및 상기 혈장방출구와 연결되고, 상기 분리된 혈장을 저장하기 위한 혈장저장챔버; 상기 전혈유입구와 혈장저장챔버 사이에 형성되고, 유입된 전혈로부터 혈장을 분리하기 위한 종이필터 및 외부구동없이 자체적으로 생성된 모세관력에 의해서 상기 혈장방출구 방향으로 혈장을 이동시키기 위해 상기 혈장저장챔버 내에 형성된 미세구조체를 포함하는 마이크로 필터 소자를 제공한다. 종이필터, 혈장, 혈구, 모세관력
Abstract:
본 발명에 따른 혈액 중의 혈장 분리를 위하여 마이크로채널을 이용한 혈장분리기는 몸체; 상기 몸체내에 형성되고, 유입되는 혈액이 내부에서 흘러 유출되는 유로인 마이크로채널; 상기 마이크로채널에 형성되고, 상기 혈액의 혈구 또는 혈장의 흐름을 교란시켜 상기 혈구 및 혈장을 서로 분리하는 분리부재; 상기 마이크로채널과 연통되고, 상기 혈액이 유입되는 유입부; 및 상기 마이크로채널과 연통되고, 상기 혈액이 유출되는 유출부를 포함한다. 본 발명은 제작이 용이하고, 별도의 부가 장치없이 간단한 펌핑에 의해 유입된 혈액중에서 자동적으로 혈장을 분리하며, 혈액을 시료로 하는 랩온어칩형의 집적화된 바이오센서내에서 시료의 전처리부로 활용할 수 있고, 플라스틱재로 제작되는 경우, 가격이 저렴하면서 다중 대량 제작이 가능하여 혈액을 이용하는 일회용 혈장분리소자로서 간편하게 사용될 수 있는 효과가 있다. 혈액, 혈구, 혈장, 마이크로채널, 혈장분리기, 바이오센서, 랩온어칩
Abstract:
A microfiltration device for separating serum(blood plasma) from the whole blood, and a method for preparing the microfiltration device are provided to simplify the operation process and to prevent the decrease of serum separation efficiency due to the accumulation of a blood corpuscle at a microstructure. A microfiltration device for separating serum from the whole blood comprises a whole blood inlet(110) where the whole blood enters; a serum outlet(120) where the serum separated from the whole blood is discharged; a microchannel(290) which connects the whole blood inlet and the serum outlet; a micropump which is formed at the lower part of the whole blood inlet to move the whole blood flown in the serum outlet direction through the microchannel by the pressure generated without the external operation; and a microstructure(270) which is formed in the microchannel to separate serum from the whole blood.
Abstract:
A method for forming a micro cavity is disclosed. In the method for forming the cavity, a first layer is formed on a silicon layer and a trench is formed in the silicon layer by selectively etching the silicon layer. A second and a third layers are formed on the trench and on the silicon layer. Etching holes are formed through the third layer by partially etching the third layer. A cavity is formed between the silicon layer and the third layer after the second layer is removed through the etching holes. Therefore, the cavity having a large size can be easily formed and sealed in the silicon layer by utilizing the volume expansion of the silicon or the poly silicon layer. Also, a vacuum micro cavity can be formed according as a low vacuum CVD oxide layer or a nitride layer formed on the etching holes which are partially opened after the thermal oxidation process by controlling the size of the etching holes concerning the other portion of the poly silicon layer.