Abstract:
Optical communications can be performed using spectral interferometry. An incident transmission pulse or beam may be mixed with a locally generated beam or pulse to create an interference pattern that may be analyzed to extract the transmitted data. The incident transmission pulse or beam may also be split and mixed with itself to create an interference pattern.
Abstract:
Apparatus and a method for performing high resolution optical imaging in the near infrared of internal features of semiconductor wafers uses an optical device made from a material having a high index of refraction and held in very close proximity to the wafer. The optical device may either be a prism or a plano-convex lens. The plano-convex lens may be held in contact with the wafer or separated from the wafer via an air bearing or an optical coupling fluid to allow the sample to be navigated beneath the lens. The lens may be used in a number of optical instruments such as a bright field microscope, a Schlieren microscope, a dark field microscope, a Linnik interferometer, a Raman spectroscope and an absorption spectroscope.
Abstract:
Apparatus and a method for performing high resolution optical imaging in the near infrared of internal features of semiconductor wafers (110) uses an optical device (112) made from a material having a high index of refraction and held in very close proximity to the wafer (110). The optical device (112) may either be a prism (130) or a plano-convex lens (112). The plano-convex lens (112) may be held in contact with the wafer (110) or separated from the wafer via an air bearing (112') or an optical coupling fluid (214) to allow the sample to be navigated beneath the lens (112). The lens (112) may be used in a number of optical instruments such as a bright field microscope, a Schlieren microscope, a dark field microscope, a Linnik interferometer, a Raman spectroscope and an absorption spectroscope.
Abstract:
A wavelength variation measuring apparatus is disclosed. A light beam from a light source device capable of controlling an oscillation wavelength is divided into two light beams by a light divider. A predetermined optical path length difference is imparted to the divided light beams to synthesize the beams by a light synthesizer. A part of the synthesized light is used as detection light and the rest of the synthesized light is used as measuring light. A beat signal is detected from the detection light by a photodetector. A feedback control is effected to the light source device by use of the beat signal to thereby stabilize the oscillated wavelength of the light source device and to direct the measuring light to an object to be measured. The beat signal is rendered as a measurement data correction signal, and measurement data obtained by directing the measuring light to the object to be measured is corrected.
Abstract:
Apparatus and a method for performing high resolution optical imaging in the near infrared of internal features of semiconductor wafers uses an optical device made from a material having a high index of refraction and held in very close proximity to the wafer. The optical device may either be a prism or a plano-convex lens. The plano-convex lens may be held in contact with the wafer or separated from the wafer via an air bearing or an optical coupling fluid to allow the sample to be navigated beneath the lens. The lens may be used in a number of optical instruments such as a bright field microscope, a Schlieren microscope, a dark field microscope, a Linnik interferometer, a Raman spectroscope and an absorption spectroscope.
Abstract:
Interferometric apparatus and method for detection and characterization of particles using light scattered therefrom. Differential phase measurements on scattered light from particles are possible using the two-frequency Zeeman effect laser which emits two frequencies of radiation 250 kHz apart. Excellent discrimination and reproducibility for various pure pollen and bacterial samples in suspension have been observed with a single polarization element. Additionally, a 250 kHz beat frequency was recorded from an individual particle traversing the focused output from the laser in a flow cytometer.
Abstract:
The device comprises : a laser device (10, 20) for the frequency n1 (11) and the frequency n2 (21), each provided with a polarizing beam splitter (12, 22) for producing crossed polarized partial beams of frequency n1 (13, 14) and n2 (23, 24), respectively, with a modulator (18, 28) for shifting the frequency of each of the partial beams to the frequency f1 or f2, respectively, with a pair of deflecting mirrors (15, 17, 25, 27) and with a polarizing beam splitter (16, 26) for uniting (19, 29) the partial beams n1, n1+f1, n2, n2+f2; two photodetectors (35, 45) before each of which a polarizer (34, 44) is arranged; a Michelson interferometer; a non-polarizing beam splitter (30) for distributing each of the partial beams (19, 29) into a measurement light beam (32) or a reference light beam (33). The reference light beam is transmitted to the corresponding photodetector (35). The measurement light beam (32) is transmitted to the Michelson interferometer and then to the corresponding photodetector (45).The photodetector signals are modulated in function of the amplitude, and the phase difference between the two modulated signals is determined. This phase difference depends only on the position of the test object and the equivalent wavelenght of the difference, n1-n2. For stabilization or correction, the device can be executed in duplicate and one of the executions used as a reference. The corresponding process can be applied to determine positions or distances as the interval between two positions. Uncertainties can be eliminated by shifting the distance or changing the frequency with simultaneous integration of the phase difference over time.
Abstract:
Optical communications can be performed using spectral interferometry. An incident transmission pulse or beam may be mixed with a locally generated beam or pulse to create an interference pattern that may be analyzed to extract the transmitted data. The incident transmission pulse or beam may also be split and mixed with itself to create an interference pattern.
Abstract:
An apparatus for measuring changes in a variable interference section of an interferometer comprises a laser source for producing beams of the frequency n.sub.1 and the frequency n.sub.2, polarizing beam splitters for producing cross-polarized partial beams of frequency n.sub.1 or n.sub.2, modulators for displacing the frequency of one of the partial beams by frequency f.sub.1 or f.sub.2, a pair of deflecting mirrors in each case and polarizing beam splitters for combining the partial beam n.sub.1, n.sub.1 +f.sub.1, n.sub.2, n.sub.2 +f.sub.2. The apparatus further includes two photodetectors, upstream of which are arranged a polarizer, a Michelson interferometer, a non-polarizing beam splitter for splitting the partial beams in each case into a measuring light beam or a reference light beam. The reference light beam passes to an associated photodetector. The measuring light beam passes into the Michelson interferometer and then to the associated photodetector. The signals of the photodetectors are demodulated according to the amplitude and the phase difference between the two demodulated signals is determined. This phase difference is only dependent on the position of a measurement object and the equivalent wavelength of the difference n.sub.1 -n.sub.2. A method for measuring changes by determining positions or distances is performed by the apparatus.
Abstract:
The present apparatus includes a two-frequency, Zeeman-effect laser and matched, doubly refracting crystals in the construction of an accurate interferometer. Unlike other interferometric devices, the subject invention exhibits excellent phase stability owing to the use of single piece means for producing parallel interferometer arms, making the interferometer relatively insensitive to thermal and mechanical instabilities. Interferometers respond to differences in optical path length between their two arms. Unlike many interferometric techniques, which require the measurement of the location of interference fringes in a brightly illuminated background, the present invention permits the determination of the optical path length difference by measuring the phase of an electronic sine wave. The present apparatus is demonstrated as a differential thermooptic spectrometer for measuring differential optical absorption simply and accurately which is but one of many applications therefor. The relative intensities of the heating beams along each arm of the interferometer can be easily adjusted by observing a zero phase difference with identical samples when this condition is obtained.