Abstract:
The ion source apparatus of the present invention includes at least one pair of antenna-opposed magnets sandwiching an antenna element and moveable to magnetic element and the antenna element both in horizontal and vertical directions in a plasma chamber, and a control means performing a positional adjustment over the antenna-opposed magnets to the antenna element in the plasma chamber. An electrons-generated region of high-concentration is formed around the antenna element through electric fields based on outputs of the antenna element and magnetic fields of the antenna-opposed magnets crossing the antenna element.
Abstract:
The invention relates to a device and method for moving an ion source in a magnetic field by making use of the Lorentz force. The ability of the electron source to move makes it possible to extend and retract it simply by switching the operating current on and off. In mass spectrometry, this means that the entrance of a mass spectrometric analyzer is not permanently obstructed but can be made accessible any time for other applications, such as laser beams.
Abstract:
A laser driven compact ion source including a light source that produces an energy pulse, a light source guide that guides the energy pulse to a target and produces an ion beam. The ion beam is transported to a desired destination.
Abstract:
An electron beam generating apparatus for generating a plurality of electron beams, which includes: a plurality of cathodes for generating thermoelectrons; a cathode power supply unit for applying negative voltage to the cathodes so as to emit the thermoelectrons from the cathodes; a plurality of grids, which correspond to the plurality of cathodes respectively, for focusing the thermoelectrons emitted from each of the plurality of cathodes, and shaping the plurality of electron beams; and an insulator on which the plurality of cathodes and the plurality of grids are attached.
Abstract:
The present invention is directed to a nanotube coated with diamond or diamond-like carbon, a field emitter cathode comprising same, and a field emitter comprising the cathode. It is also directed to a method of preventing the evaporation of carbon from a field emitter comprising a cathode comprised of nanotubes by coating the nanotube with diamond or diamond-like carbon. In another aspect, the present invention is directed to a method of preventing the evaporation of carbon from an electron field emitter comprising a cathode comprised of nanotubes, which method comprises coating the nanotubes with diamond or diamond-like carbon.
Abstract:
The present invention concerns the formation of a stable electrospray of a volatile liquid at reduced pressures by limiting its tendency to evaporate. In a first approach, multi-component capillary jets are produced, comprising a thin layer of low volatility liquid, which is not necessarily a good conductor, surrounding a core of volatile and conducting liquid such as water, so as to minimize direct exposure of the volatile liquid to the region of low pressure. In a second approach, the diameter of the meniscus of a Taylor cone is reduced to a critical diameter, below which no evaporative freezing occurs.
Abstract:
The use of dual-focused ion beams for semiconductor image scanning and mask repair is disclosed. A mask is imaged with either a focused negative ion beam, such as a focused oxygen ion beam, or a focused positive ion beam, such as a focused gallium ion beam. Mask imaging is also referred to as image scanning. Defects in the mask are repaired with the ion beam not used in imaging of the mask. Also disclosed is image scanning being performed with the focused negative ion beam to neutralize potential charge buildup, and mask repair being performed with the focused positive ion beam. An apparatus is disclosed that has a negative ion mechanism supplying negative ions, a positive ion mechanism supplying positive ions, a filter to select the desired ratio of the negative to the positive ions, and an aiming mechanism to focus the ions onto the mask.
Abstract:
An electron source has an anode and a cathode that is capable of being negatively biased relative to the anode, the cathode having an electron emitting portion and a cathode axis. An electromagnetic radiation source is adapted to generate an electromagnetic radiation beam to heat the cathode. A lens is adapted to direct the electromagnetic radiation beam onto the cathode, the lens having a lens axis that forms an acute angle with, or is substantially parallel to, the cathode axis of the electron emitting portion.
Abstract:
A laser illumination apparatus for illuminating a semiconductor film with a linear laser beam while scanning the semiconductor film with the linear laser beam. An optical system generates a linear laser beam having a beam width W by dividing a pulse laser beam that is emitted from a pulsed laser light source into a plurality of beams vertically and horizontally, and combines divisional beams after they have been processed into a linear shape individually. A mechanism is provided to move a substrate that is mounted with the semiconductor film. A condition W/20nullnull(r)nullxnullW/5 or null(r)nullW/20nullxnullW/5 is satisfied, where r is a height difference of the surface of the semiconductor film, null(r) is a variation amount of the beam width W as a function of the height difference r, and x is a movement distance of the substrate during an oscillation period of the pulsed laser light source.
Abstract translation:一种用线性激光束照射半导体膜的激光照明装置,同时用线性激光束扫描半导体膜。 光学系统通过将从脉冲激光光源发射的脉冲激光束垂直和水平地分离成多个光束来生成具有光束宽度W的线性激光束,并且在分割光束被处理成直线形状之后组合分割光束 单独。 提供了用于移动安装有半导体膜的衬底的机构。 满足条件W / 20 <= DELTA(r)<= x <= W / 5或DELTA(r)<= W / 20 <= x <= W / 5,其中r是表面的高度差 半导体膜DELTA(r)是作为高度差r的函数的光束宽度W的变化量,x是脉冲激光光源的振荡期间的基板的移动距离。
Abstract:
A charge exchange device, typically used in an ion beam accelerator, includes a charge exchange tube defining a charge exchange chamber and beam ports for allowing an ion beam to enter and exit the charge exchange tube, a containment tube mounted external to the charge exchange tube, the containment tube having an entrance port for a charge exchange material, and at least one intermediate tube mounted between the charge exchange tube and the containment tube. The charge exchange tube and the at least one intermediate tube have at least one set of flow ports that are aligned on opposite sides of the charge exchange chamber to permit columnated flow of the charge exchange material into and through the charge exchange chamber. Leakage of the charge exchange material through the beam ports is reduced in comparison with prior art charge exchange devices.