纳米蒙脱石的制备方法
    34.
    发明公开

    公开(公告)号:CN1827706A

    公开(公告)日:2006-09-06

    申请号:CN200610042359.0

    申请日:2006-02-05

    Abstract: 本发明涉及一种纳米蒙脱石的制备方法。该方法包括下述顺序的工艺步骤与条件:a.搅拌2,将粉状蒙脱石1进行加温、搅拌并加入插层剂3;b.升温5,使吸附水6蒸发;c.恒温8,将减水混合料7间歇搅拌,使插层剂3进入扩大粉状蒙脱石1的硅酸盐片层间距;d.升温9,产生柱撑混合料11;e.恒温12,使插层剂3的易分解组分10逐渐挥发;f.降温13,膨胀成膨松蒙脱石14;g.下料15,将膨松蒙脱石14装至保温防潮容器;h.气流粉碎16,将膨松蒙脱石14超微化气流粉碎,产生纳米蒙脱石17。所述述方法用的插层剂尿素和聚梨酸酯。本发明具有工艺简便、设备少、易控制,插层剂来源广、价廉、易购、易分解无残留、能有效防止粉体团聚,产出蒙脱石的粒径在1~100nm范围内,扩大了应用领域等特点。

    一种高钙盐湖卤水提锂的方法
    36.
    发明公开

    公开(公告)号:CN119530558A

    公开(公告)日:2025-02-28

    申请号:CN202411226841.4

    申请日:2024-09-03

    Abstract: 本发明公开了一种高钙盐湖卤水提锂的方法,采用强化晒盐脱钙技术,大幅减少后续化学法除杂药剂耗量;强化脱钙盐阶段(第N级)产生的钙盐返回前级晒盐脱钙进行反溶,避免结晶锂的损失;N‑1级前的钙结晶盐通过洗涤,洗液返回系统,实现夹带锂的有效回收,大幅提高锂综合回收率。根据卤水溶液性质及杂质共沉淀行为,利用浓卤中的钙与硼共沉淀行为,减少除杂药剂的耗量,同时还可省去单独除硼工序,降低设备投资及运行成本。本发明通过晒盐浓缩‑结晶盐洗涤‑化学沉淀法除杂‑沉锂等工序制备碳酸锂产品,具有工艺流程短、投资成本低,锂回收率高,药剂消耗小及绿色环保等特点,可降低企业生产投资成本,进一步增加企业经济效益。

    从盐田氯化钙结晶中回收锂的方法

    公开(公告)号:CN115011816B

    公开(公告)日:2023-05-26

    申请号:CN202210621660.6

    申请日:2022-06-02

    Abstract: 从盐田氯化钙结晶中回收锂的方法,它包括预浓缩池中的卤水和从浓缩池采集的氯化钙结晶,它还包括以下步骤与条件:渗滤:将氯化钙结晶集中堆存在指定区域,通过对氯化钙结晶自然渗滤分离出渗滤后的氯化钙结晶、部分夹带的卤水和渗滤液,渗滤液返回到浓缩池;破碎:将渗滤后的氯化钙结晶破碎成小颗粒;洗涤:将小颗粒的氯化钙结晶进行搅拌洗涤,洗涤液为预浓缩池中的卤水,洗涤的液固比为1~4:1,在搅拌过程中氯化钙结晶被粉碎成细小的晶粒,再对洗涤后的浆液进行过滤和洗涤,洗涤液为预浓缩池中的卤水,过滤后的洗涤液返回到预浓缩池或蒸发浓缩池,经过洗涤后的氯化钙结晶堆存在指定区域,洗涤后的富锂溶液返回预浓缩池或浓缩池。它具有既能极大提高锂的回收率和资源利用率,又能降低生产成本、工艺流畅和对环境友好等优点。

    一种矿山爆堆的精细化管理方法

    公开(公告)号:CN110648246A

    公开(公告)日:2020-01-03

    申请号:CN201910875481.3

    申请日:2019-09-17

    Abstract: 本发明涉及一种矿山爆堆的精细化管理方法,该方法在于形成收集爆堆信息、生成爆堆数据文件、爆堆管理系统、智能配矿、报表生成流程;所述生成爆堆数据文件是将信息导入SURPAC软件,计算爆堆矿岩理论储量,同时通过自主开发的接口程序,将各爆堆闭合圈分界参数信息写入后缀为.str文件,并以A.str文件命名保存;所述爆堆管理系统是将A.str文件导入爆堆管理系统,系统依据各有价金属品位的范围要求,自动将矿岩分类标识与对爆堆编号,它具有爆堆数据能够脱离主体三维地质程序后进行存储和交互、统一命名和分类保证了数据的准确性、实现爆堆运输路径的计算选择优化、有效地指导采场的生产调度计划安排、提高了生产调度效率与降低运输成本等优点,适于露天矿山爆堆管理应用。

    一种硫化铜矿生物堆浸系统调控酸和铁的方法

    公开(公告)号:CN107354298B

    公开(公告)日:2019-03-08

    申请号:CN201710532252.2

    申请日:2017-07-03

    Abstract: 本发明公开了一种硫化铜矿生物堆浸系统调控酸和铁的方法,在进行硫化铜矿生物堆浸时,当每层矿石铜浸出完全时,先铺一层石灰石颗粒,再在该层石灰石颗粒上面覆盖一层新矿石继续进行生物堆浸;当铜浸出再次完全后,再依次铺设石灰石颗粒层并覆盖新矿石,如此往复,进行硫化铜矿生物堆浸;所述石灰石颗粒的厚度为5cm~30cm,根据生物堆浸系统酸和铁浓度高于控制范围的程度来确定石灰石颗粒的厚度,当堆浸系统酸和铁浓度偏高较多时石灰石颗粒的厚度取大值,反之取小值;所述石灰石颗粒的粒径为1mm~20mm。本发明实现了在矿堆内调节铜矿堆浸系统的酸和铁平衡,将中和渣固定在矿堆内部,以大幅度减少中和渣量,明显提高经济效益和环境效益。

Patent Agency Ranking