基于机动工况的递阶饱和控制律角速度限幅动态修正方法

    公开(公告)号:CN115599109A

    公开(公告)日:2023-01-13

    申请号:CN202211241824.9

    申请日:2022-10-11

    Abstract: 本发明公开了一种基于机动工况的递阶饱和控制律角速度限幅动态修正方法,包括:计算姿态机动过程中最大允许的姿态角速度ωmax;根据姿态机动初始时刻,执行机构残余角动量H0和卫星转动惯量矩阵I0,将残余角动量H0转换成初始角速度限幅约束向量ω1;根据当前姿态机动任务确定机动目标角速度ω2,并计算初始角速度限幅约束向量ω1和机动目标角速度ω2的和向量ω3;根据当前陀螺组合测量得到的姿态角速度,实时计算当前姿态角速度与目标姿态角速度之间的偏差ωerr,并计算其单位向量;根据计算得到的最大允许的姿态角速度ωmax和角速度偏差ωerr结果,实时计算当前机动姿态角速度限幅值ωsat。本发明增强控制算法对不同任务的适应性,提高卫星在轨工作自主性和任务执行效率。

    一种基于CW方程的解耦变增益自主相对导航方法

    公开(公告)号:CN111189457B

    公开(公告)日:2021-12-07

    申请号:CN202010116789.2

    申请日:2020-02-25

    Abstract: 本发明涉及一种基于CW方程的解耦变增益自主相对导航方法,包括如下步骤:步骤一:建立追踪星轨道直角坐标系,作为相对导航的参考直角坐标系,建立该坐标系下CW方程,作为状态方程;步骤二:将星上雷达直接测量的星间数据转换到参考直角坐标系下,建立观测方程;步骤三:忽略轨道角速度的平方及其高阶项,分别对状态方程和观测方程进行解耦,设计解耦后各轴独立的卡尔曼滤波器,所述的卡尔曼滤波器为建立在参考直角坐标系下的标准线性系统;步骤四:在上述卡尔曼滤波器的基础上设计变增益滤波器,进行各轴相对运动状态估计,完成相对导航设计。

    一种基于CW方程的解耦变增益自主相对导航方法

    公开(公告)号:CN111189457A

    公开(公告)日:2020-05-22

    申请号:CN202010116789.2

    申请日:2020-02-25

    Abstract: 本发明涉及一种基于CW方程的解耦变增益自主相对导航方法,包括如下步骤:步骤一:建立追踪星轨道直角坐标系,作为相对导航的参考直角坐标系,建立该坐标系下CW方程,作为状态方程;步骤二:将星上雷达直接测量的星间数据转换到参考直角坐标系下,建立观测方程;步骤三:忽略轨道角速度的平方及其高阶项,分别对状态方程和观测方程进行解耦,设计解耦后各轴独立的卡尔曼滤波器,所述的卡尔曼滤波器为建立在参考直角坐标系下的标准线性系统;步骤四:在上述卡尔曼滤波器的基础上设计变增益滤波器,进行各轴相对运动状态估计,完成相对导航设计。

    一种基于推力器偏差估计的轨控策略在轨修正方法和系统

    公开(公告)号:CN109649692A

    公开(公告)日:2019-04-19

    申请号:CN201811625151.0

    申请日:2018-12-28

    Abstract: 本发明公开了一种基于推力器偏差估计的轨控策略在轨修正方法和系统,该方法包括:分别获取整星质心、第一轨控推力器和第二轨控推力器相对布局系的位置信息;以及,获取第一轨控推力器和第二轨控推力器的推力矢量方向;进行在轨辨识,并根据在轨辨识结果,确定第一轨控推力器和第二轨控推力器产生的力矩;构建干扰力矩评价函数;对干扰力矩评价函数进行求解,确定干扰力矩评价函数的极小值,并计算得到喷气脉宽;根据计算得到的喷气脉宽,进行轨道控制。本发明采用能量最优原则在轨更新轨控推力分配策略,实现轨控干扰的最小化。

    一种非合作目标的星间动态高精度实时姿态测量方法

    公开(公告)号:CN118687577A

    公开(公告)日:2024-09-24

    申请号:CN202410894369.5

    申请日:2024-07-04

    Abstract: 本发明公开了一种非合作目标的星间动态高精度实时姿态测量方法。卫星根据观测目标特征配备多种导航敏感器,本发明分析各种导航敏感器的特点,综合考量,选取最优的相对导航滤波的数据作为输入源。根据卫星轨道特征以及目标运动特点,规划基于姿态角度以及基于相对的构型姿态运动角速度的跟踪方法,完成对天基目标的实时三维视线跟踪。本方法利用卫星相对导航、自主导航以及姿态敏感器数据,对目标视线的进行实时规划跟踪以及姿态预判,姿态规划精度高,设计规划姿态数据可直接实时用于轨迹跟踪、目标观测、空间科学实验,具有较强的工程实用性。

    一种基于误差四元数的火星探测对地天线指向修正方法

    公开(公告)号:CN111967125B

    公开(公告)日:2024-08-06

    申请号:CN202010621537.5

    申请日:2020-06-30

    Abstract: 本发明涉及一种基于误差四元数的火星探测对地天线指向修正方法,具体步骤包括:S1、定义空间三维旋转的四元数,建立探测器机械坐标系;S2、基于地面精测数据,采用逐步误差修正的策略,修正最终对地天线X轴驱动角度α和Y轴驱动角度β;S3、基于在轨标定数据,得到不同X轴驱动角度α下的误差角dα和不同Y轴驱动角度β下的误差角dβ,通过一次线性拟合得到误差角与驱动角的关系进行修正。本发明针对地面精测结果和在轨标定结果两个方面进行修正,地面精测结果修正基于旋转四元数,在轨标定结果修正基于一次线性误差拟合,可以有效保障不同驱动角度下的误差。

    一种高轨非合作目标在轨光压辨识方法

    公开(公告)号:CN111090830B

    公开(公告)日:2023-06-02

    申请号:CN201911247650.5

    申请日:2019-12-09

    Abstract: 本发明公开了一种高轨非合作目标在轨光压辨识方法,首先,得到卫星之间的相对位置、相对速度;其次,求得太阳矢量在轨道坐标系下的面内角和面外角;其次,引入太阳光压摄动差对相对运动的影响,推导得到含太阳光压作用的相对运动方程;最后,建立两星相对位置与光压摄动系数之间的关系,解算相对运动方程中光压摄动系数。本发明提供的高轨非合作目标在轨光压辨识方法解决了编队卫星高精度相对运动建模问题,解决了在非合作目标的面质比不可知情况下的光压摄动系数估计问题,大大提高了相对运动模型精度以及在轨制导律的控制精度,为提高编队飞行的控制精度提供有力支撑。

    一种编队卫星绕飞自主控制方法

    公开(公告)号:CN110632935A

    公开(公告)日:2019-12-31

    申请号:CN201910777740.9

    申请日:2019-08-22

    Abstract: 本发明提供了一种编队卫星绕飞自主控制方法,包括如下步骤:a、获得卫星之间的相对位置、相对速度;b、建立太阳矢量在追踪星轨道坐标系下的面内角θ;c、建立绕飞控制时刻△t与太阳面内角θ的关系;d、建立绕飞控制速度脉冲与相对运动状态的关系;e、设计绕飞过程星上自主控制方法;f、建立面外多角度成像控制脉冲与轨道面内绕飞尺度的关系。通过给出了绕飞形成时刻的表达式,再建立单脉冲控制与相对运动状态的关系式,然后在合适时机调整Y振幅实现Y方向与轨道面角度的变换,实现对目标的多角度成像。不改变两星相对运动的稳定性,安全性强,还可以多方位对目标成像,并且自主控制过程中不需要地面控制,节约人力物力,降低成本。

    星体转动惯量在轨辨识方法及设备

    公开(公告)号:CN109682536A

    公开(公告)日:2019-04-26

    申请号:CN201811582487.3

    申请日:2018-12-24

    CPC classification number: G01M1/10

    Abstract: 本发明涉及一种星体转动惯量在轨辨识方法和设备。所述星体转动惯量在轨辨识方法包括:在采用飞轮姿态机动启动时,获取飞轮转速和卫星角速度;等待预设时间后,机动轴的转动惯量初值;基于预设算法,递推计算转动惯量;将飞轮加速度结束时递推获取到的参数值的第一维作为转动惯量估计值。本发明的方法及设备可在轨估计卫星转动惯量,从而优化了卫星姿态机动控制算法,并大大提高了卫星姿态机动性能。

Patent Agency Ranking