一种改进深度主动学习的锌浮选泡沫图像分类算法及系统

    公开(公告)号:CN114627333A

    公开(公告)日:2022-06-14

    申请号:CN202210249062.0

    申请日:2022-03-14

    Applicant: 中南大学

    Abstract: 一种改进深度主动学习的锌浮选泡沫图像分类算法及系统,本发明针对类别不平衡的泡沫图像提出一种改进深度主动学习的锌浮选泡沫图像分类算法及系统。利用有标签样本训练初始卷积神经网络,并利用卷积神经网络对无标签样本进行类别预测,基于一种带损耗预测模块的主动学习方法,计算无标签样本的信息量并排序,再人工标注信息量最大的样本,加入训练集更新深度学习模型的参数,逐步提高网络的性能;使用融合Inception‑v2的Dense Net新型网络结构,提出一种新颖的考虑类别之间的权重的损失函数进行网络训练。本发明在降低标记成本的同时,提高模型了不平衡数据集上的分类性能,有效建立锌浮选工况识别模型,能稳定和优化生产。

Patent Agency Ranking