-
公开(公告)号:CN118521876B
公开(公告)日:2024-10-22
申请号:CN202410978491.0
申请日:2024-07-22
Applicant: 华侨大学 , 杭州电子科技大学 , 厦门亿联网络技术股份有限公司
IPC: G06V10/98 , G06N3/045 , G06N3/0464 , G06V10/40 , G06V10/54 , G06V10/74 , G06V10/776 , G06V10/82 , G06V20/40
Abstract: 本发明公开了一种基于相似性度量的沉浸式视频质量评价方法及装置,涉及视频处理领域,为了尽可能地解决视频中所存在的冗余信息问题,首先采用随机抽样的方式筛选视频帧;然后考虑到卷积神经网络能够很好地模拟人类视觉感知过程充分捕捉从低层次到高层次的视觉信息进而提取纹理和结构特征,采用预训练的ResNet50模型进行特征提取;并考虑到人类的视觉感知系统在观看视频时不仅会受视频内容的影响还会受到记忆时间的影响,利用一个受主观启发的时间池化策略得到纹理和深度视频的质量分数;最后根据人眼视觉的偏好对纹理和深度视频质量评分进行权重调整得到最终的沉浸式视频质量分数。本发明具有较好的沉浸式视频质量评价效果。
-
公开(公告)号:CN114239730B
公开(公告)日:2024-08-20
申请号:CN202111564321.0
申请日:2021-12-20
Applicant: 华侨大学 , 厦门亿联网络技术股份有限公司
IPC: G06F16/901 , G06N5/025 , G06F40/30 , G06V10/44 , G06F16/33 , G06F16/56 , G06N3/045 , G06N3/0464
Abstract: 本发明公开了一种基于近邻排序关系的跨模态检索方法,包括:构建用于图像模态数据以及文本模态数据的深度语义特征提取的深度神经网络模型;将图像数据与文本数据对分别输入到所述深度神经网络模型中进行训练;结合近邻样本排序损失函数和语义相似度度量损失函数,计算语义对齐的损失值,通过训练缩小损失值,得到训练好的深度神经网络模型;通过训练好的深度神经网络模型提取到图像数据和文本数据间的公共语义表达,并将图像的深度语义特征与文本的深度语义特征转化到公共语义空间中,实现语义相似度的度量和检索。本发明方法能够有效地实现图像和文本两种不同模态数据间的跨模态检索。
-
公开(公告)号:CN116109880A
公开(公告)日:2023-05-12
申请号:CN202310088624.2
申请日:2023-02-09
Applicant: 华侨大学 , 厦门亿联网络技术股份有限公司
Abstract: 本发明提供一种鬼影方位视觉注意力学习方法。现有方位视觉注意力学习方法依赖卷积运算进行维度变换以及方位信息学习,计算和参数代价都较高。为此,本发明将轻量的鬼影模块耦合到方位视觉注意力学习方法中,设计降维鬼影模块轻量化压缩特征映射图,随后进行方位信息学习以节约计算和参数代价;设计去冗余鬼影模块降低特征映射图中的冗余信息,能改善特征质量。本发明作为一种新颖的视觉注意力机制有广泛应用,例如图像目标检测、图像目标识别、图像分割等。
-
公开(公告)号:CN114743128B
公开(公告)日:2024-08-09
申请号:CN202210225924.6
申请日:2022-03-09
Applicant: 华侨大学 , 厦门亿联网络技术股份有限公司
IPC: G06V20/40 , G06V10/30 , G06N3/0464 , G06N3/08 , G06V10/774
Abstract: 本发明公开了一种基于异种神经网络的多模态东北虎再辨识方法及装置,涉及机器视觉技术领域,可应用于跟踪东北虎的活动轨迹调查,对保护濒危的东北虎具有重大意义。本发明的异种神经网络包括用双分支残差神经网络和Transformer网络,其中,双分支残差卷积神经网络用于先对红外图像和可见光图像学习局部特征;Transformer网络对由双分支残差卷积神经网络学得的红外图像和可见光图像的局部特征,利用自注意力机制学习东北虎的全局特征。双分支残差卷积神经网络的各分支结构相同但参数独立,用于处理红外和可见光东北虎图像光谱、分辨率、对比度等特性;而Transformer网络从全局视角学习信息东北虎特征,减少图像模态差异带来的噪声影响,实现高准确率的东北虎再辨识。
-
公开(公告)号:CN114972812A
公开(公告)日:2022-08-30
申请号:CN202210624115.2
申请日:2022-06-02
Applicant: 华侨大学 , 厦门亿联网络技术股份有限公司
Abstract: 本发明提供一种基于结构相似度的非局部注意力学习方法,可广泛应用于机器视觉领域,例如图像分割、图像分类、图像识别等。现有非局部注意力方法简单计算不同空域位置的两个信号内积作为二者的相似度度量,并不完全符合人类视觉感知特点。针对这一问题,本发明提出利用结构相似度衡量不同空域位置的信号之间的相似度,在非局部注意力学习方法中充分考虑人类视觉对信号感知三个重要因素,即亮度、对比度和结构。其次,本发明进一步提出多尺度结构相似度度量策略,在不同尺度上更为全面地进行信号相似度度量。因此,本发明能够取得比现有非局部注意力方法更好地注意力学习效果。
-
公开(公告)号:CN118521876A
公开(公告)日:2024-08-20
申请号:CN202410978491.0
申请日:2024-07-22
Applicant: 华侨大学 , 杭州电子科技大学 , 厦门亿联网络技术股份有限公司
IPC: G06V10/98 , G06N3/045 , G06N3/0464 , G06V10/40 , G06V10/54 , G06V10/74 , G06V10/776 , G06V10/82 , G06V20/40
Abstract: 本发明公开了一种基于相似性度量的沉浸式视频质量评价方法及装置,涉及视频处理领域,为了尽可能地解决视频中所存在的冗余信息问题,首先采用随机抽样的方式筛选视频帧;然后考虑到卷积神经网络能够很好地模拟人类视觉感知过程充分捕捉从低层次到高层次的视觉信息进而提取纹理和结构特征,采用预训练的ResNet50模型进行特征提取;并考虑到人类的视觉感知系统在观看视频时不仅会受视频内容的影响还会受到记忆时间的影响,利用一个受主观启发的时间池化策略得到纹理和深度视频的质量分数;最后根据人眼视觉的偏好对纹理和深度视频质量评分进行权重调整得到最终的沉浸式视频质量分数。本发明具有较好的沉浸式视频质量评价效果。
-
公开(公告)号:CN114972812B
公开(公告)日:2024-06-18
申请号:CN202210624115.2
申请日:2022-06-02
Applicant: 华侨大学 , 厦门亿联网络技术股份有限公司
IPC: G06V10/74 , G06N3/0464 , G06N3/08
Abstract: 本发明提供一种基于结构相似度的非局部注意力学习方法,可广泛应用于机器视觉领域,例如图像分割、图像分类、图像识别等。现有非局部注意力方法简单计算不同空域位置的两个信号内积作为二者的相似度度量,并不完全符合人类视觉感知特点。针对这一问题,本发明提出利用结构相似度衡量不同空域位置的信号之间的相似度,在非局部注意力学习方法中充分考虑人类视觉对信号感知三个重要因素,即亮度、对比度和结构。其次,本发明进一步提出多尺度结构相似度度量策略,在不同尺度上更为全面地进行信号相似度度量。因此,本发明能够取得比现有非局部注意力方法更好地注意力学习效果。
-
公开(公告)号:CN112818135A
公开(公告)日:2021-05-18
申请号:CN202110208342.2
申请日:2021-02-24
Applicant: 华侨大学 , 厦门亿联网络技术股份有限公司
Abstract: 本发明公开了一种基于公共语义空间学习构建图文知识图谱方法,包括如下步骤:构建深度神经网络用于图像与文本数据的深度特征提取;将图像与文本数据对oi=(xi,li,yi)分别输入到深度神经网络中训练;其中oi表示第i对图像‑文本对数据以及对应的标签,xi,yi与li分别表示第i个图像数据、文本数据以及对应的标签数据;通过损失函数学习两种图像和文本数据间的公共语义表达,并将图像与文本特征转化到公共语义空间中;根据相似度度量,依据CN‑DBpedia的构建方法构建知识图谱。本发明提供的方法能有效实现图像、文本两种不同的模态间的知识图谱构建。
-
公开(公告)号:CN116416645A
公开(公告)日:2023-07-11
申请号:CN202310199941.1
申请日:2023-03-03
Applicant: 华侨大学 , 厦门亿联网络技术股份有限公司
IPC: G06V40/10 , G06V10/82 , G06N3/08 , G06V10/74 , G06N3/0464
Abstract: 本发明公开了一种基于双分支Transformer网络的属性与图像跨模态行人再辨识方法及装置,获取行人属性和行人图像,行人图像来自行人注册图像集;构建双分支Transformer网络,并对双分支Transformer网络训练,得到属性与图像跨模态行人再辨识模型,双分支Transformer网络包括同型的属性Transformer分支和图像Transformer分支;将行人属性和行人图像输入属性与图像跨模态行人再辨识模型,分别通过属性Transformer分支和图像Transformer分支提取得到属性特征和图像特征;将属性特征与图像特征进行相似度比对,得到行人属性对应的再辨识结果。属性Transformer分支和图像Transformer分支都属于同型的Transformer结构,有利于控制文本属性和行人图像在特征空间中的模态异质性问题,从而提升属性‑图像跨模态行人再辨识准确性。
-
公开(公告)号:CN115620343A
公开(公告)日:2023-01-17
申请号:CN202211386276.9
申请日:2022-11-07
Applicant: 华侨大学 , 厦门亿联网络技术股份有限公司
Abstract: 本发明提供一种基于多代理相似度聚合的跨模态行人再辨识方法,用于解决昼夜光照差异大而带来的白天可见光图像与夜晚红外图像匹配困难的问题。因此,本发明为每个类别分配多个可学习的代理,获得多代理相似度,并设计多代理相似度聚合机制,实现跨模态行人再辨识。一方面,本发明为每个类别学习多个代理,可以更好地刻画由于数据跨模态引起的剧烈类内差异;另一方面,本发明设计聚合机制,学习最佳的多代理相似度聚合方式,提升跨模态行人再辨识的准确性。因此,本发明可广泛应用于智慧城市、智慧交通以及智慧安防中的智能视频监控系统。
-
-
-
-
-
-
-
-
-