-
公开(公告)号:CN114647465A
公开(公告)日:2022-06-21
申请号:CN202210559572.8
申请日:2022-05-23
Applicant: 南京航空航天大学 , 国家电网有限公司信息通信分公司 , 国网安徽省电力有限公司信息通信分公司 , 国家电网有限公司
Abstract: 本发明公开了一种多通道注意力图神经网络聚类的单体程序拆分方法及系统,包括单体程序多属性图构建、多通道图神经网络特征嵌入表示学习、基于注意力的多通道特征嵌入融合、基于谱聚类的微服务拆分。通过图神经网络重构信息和聚类信息构建新的损失函数,实现了图注意力神经网络与聚类的联合学习框架,实现了提取微服务在功能性和模块性方面性能的提升。本发明结合单体程序多种属性信息,构建多通道图注意力网络,实现了更为高质量的特征嵌入表示,同时也提升了微服务提取方法的可扩展性,避免了微服务提取方法在应用中使用受限等问题。
-
公开(公告)号:CN114897694A
公开(公告)日:2022-08-12
申请号:CN202210503215.X
申请日:2022-05-10
Applicant: 南京航空航天大学
IPC: G06T3/40
Abstract: 本发明公开了基于混合注意力和双层监督的图像超分辨率重建方法,包括获取高分辨率的标签图像和参考图像并对其进行下采样,构建得到数据集;对数据集的图像进行多尺度特征提取;利用transformer注意力从参考图像特征中获得对应特征;利用通道注意力对提取的对应特征自适应优化处理得到迁移特征;将迁移特征与低分辨率图像特征通过解码器网络融合实现高质量的图像重建,并采用双层监督信号更新网络参数最小化损失。本发明能够提高超分辨率重建的重建效果和视觉感受。
-
公开(公告)号:CN114897694B
公开(公告)日:2024-09-24
申请号:CN202210503215.X
申请日:2022-05-10
Applicant: 南京航空航天大学
IPC: G06T3/4053
Abstract: 本发明公开了基于混合注意力和双层监督的图像超分辨率重建方法,包括获取高分辨率的标签图像和参考图像并对其进行下采样,构建得到数据集;对数据集的图像进行多尺度特征提取;利用transformer注意力从参考图像特征中获得对应特征;利用通道注意力对提取的对应特征自适应优化处理得到迁移特征;将迁移特征与低分辨率图像特征通过解码器网络融合实现高质量的图像重建,并采用双层监督信号更新网络参数最小化损失。本发明能够提高超分辨率重建的重建效果和视觉感受。
-
公开(公告)号:CN114647465B
公开(公告)日:2022-08-16
申请号:CN202210559572.8
申请日:2022-05-23
Applicant: 南京航空航天大学 , 国家电网有限公司信息通信分公司 , 国网安徽省电力有限公司信息通信分公司 , 国家电网有限公司
Abstract: 本发明公开了一种多通道注意力图神经网络聚类的单体程序拆分方法及系统,包括单体程序多属性图构建、多通道图神经网络特征嵌入表示学习、基于注意力的多通道特征嵌入融合、基于谱聚类的微服务拆分。通过图神经网络重构信息和聚类信息构建新的损失函数,实现了图注意力神经网络与聚类的联合学习框架,实现了提取微服务在功能性和模块性方面性能的提升。本发明结合单体程序多种属性信息,构建多通道图注意力网络,实现了更为高质量的特征嵌入表示,同时也提升了微服务提取方法的可扩展性,避免了微服务提取方法在应用中使用受限等问题。
-
公开(公告)号:CN115348159B
公开(公告)日:2023-06-27
申请号:CN202210958306.2
申请日:2022-08-09
Applicant: 国家电网有限公司信息通信分公司 , 南京航空航天大学 , 国网安徽省电力有限公司信息通信分公司 , 国网浙江省电力有限公司信息通信分公司 , 国家电网有限公司
IPC: H04L41/0677 , H04L41/0631
Abstract: 本发明公开了一种基于自编码器和服务依赖图的微服务故障定位方法及装置,包括:实时监测与收集微服务系统运行指标数据;基于自编码器模型判断微服务系统是否存在异常;构建服务调用关系图以刻画故障传播途径;关联微服务的运行状态与系统资源利用率从而计算服务调用关系图中每个节点的异常权重;通过改进的加权PageRank算法推断和定位引发异常的故障微服务。克服了现有微服务故障定位方法中需要人工设定各类监测指标阈值进行异常诊断的问题,提高故障定位的准确性。
-
公开(公告)号:CN115348159A
公开(公告)日:2022-11-15
申请号:CN202210958306.2
申请日:2022-08-09
Applicant: 国家电网有限公司信息通信分公司 , 南京航空航天大学 , 国网安徽省电力有限公司信息通信分公司 , 国网浙江省电力有限公司信息通信分公司 , 国家电网有限公司
IPC: H04L41/0677 , H04L41/0631
Abstract: 本发明公开了一种基于自编码器和服务依赖图的微服务故障定位方法及装置,包括:实时监测与收集微服务系统运行指标数据;基于自编码器模型判断微服务系统是否存在异常;构建服务调用关系图以刻画故障传播途径;关联微服务的运行状态与系统资源利用率从而计算服务调用关系图中每个节点的异常权重;通过改进的加权PageRank算法推断和定位引发异常的故障微服务。克服了现有微服务故障定位方法中需要人工设定各类监测指标阈值进行异常诊断的问题,提高故障定位的准确性。
-
公开(公告)号:CN116760742B
公开(公告)日:2024-06-21
申请号:CN202310749445.9
申请日:2023-06-21
Applicant: 南京南瑞信息通信科技有限公司 , 国网电力科学研究院有限公司 , 国网上海市电力公司 , 南京航空航天大学 , 国家电网有限公司
Inventor: 胡游君 , 刘金锁 , 邱玉祥 , 刘军 , 邹徐熹 , 沈耀威 , 顾亚林 , 李马峰 , 张俊杰 , 邱文元 , 施健 , 刘皓 , 谢伟 , 唐跃中 , 张王俊 , 卢士达 , 张露维 , 冯天波 , 何旭东 , 卲佳炜 , 王虹岚 , 时宽治 , 李静 , 羊麟威
IPC: H04L43/0823 , G06F18/2433 , G06F18/25 , G06N3/0464 , G06N3/0455 , G06N3/0442 , G06N3/048 , G06N3/08 , H04L43/0888
Abstract: 本发明公开了一种基于多阶段时空融合的网络流量深度异常检测方法及系统,首先使用图注意力网络和门控时间卷积网络分别提取网络流量的时空特征,然后采用双仿射模块对时空特征进行深度融合,并提出了多阶段逐层传播机制来增强模型对原始数据的特征提取,提高模型的异常识别能力,再通过对自编码器采用对抗训练的方式来放大异常的重构误差,增加了双解码器对异常样本的区分能力。本发明有效的提高了模型的泛化能力和拟合能力,同时对中间潜变量特征表示运用K‑means算法进行特征聚类,将特征与簇心的最大距离作为判断异常的标准之一,有效的减少了模型的虚警率。
-
公开(公告)号:CN116760742A
公开(公告)日:2023-09-15
申请号:CN202310749445.9
申请日:2023-06-21
Applicant: 南京南瑞信息通信科技有限公司 , 国网电力科学研究院有限公司 , 国网上海市电力公司 , 南京航空航天大学 , 国家电网有限公司
Inventor: 胡游君 , 刘金锁 , 邱玉祥 , 刘军 , 邹徐熹 , 沈耀威 , 顾亚林 , 李马峰 , 张俊杰 , 邱文元 , 施健 , 刘皓 , 谢伟 , 唐跃中 , 张王俊 , 卢士达 , 张露维 , 冯天波 , 何旭东 , 卲佳炜 , 王虹岚 , 时宽治 , 李静 , 羊麟威
IPC: H04L43/0823 , G06F18/2433 , G06F18/25 , G06N3/0464 , G06N3/0455 , G06N3/0442 , G06N3/048 , G06N3/08 , H04L43/0888
Abstract: 本发明公开了一种基于多阶段时空融合的网络流量深度异常检测方法及系统,首先使用图注意力网络和门控时间卷积网络分别提取网络流量的时空特征,然后采用双仿射模块对时空特征进行深度融合,并提出了多阶段逐层传播机制来增强模型对原始数据的特征提取,提高模型的异常识别能力,再通过对自编码器采用对抗训练的方式来放大异常的重构误差,增加了双解码器对异常样本的区分能力。本发明有效的提高了模型的泛化能力和拟合能力,同时对中间潜变量特征表示运用K‑means算法进行特征聚类,将特征与簇心的最大距离作为判断异常的标准之一,有效的减少了模型的虚警率。
-
-
-
-
-
-
-