基于MIC和图神经网络融合的航天器控制系统异常检测方法及系统

    公开(公告)号:CN117891226A

    公开(公告)日:2024-04-16

    申请号:CN202310715482.8

    申请日:2023-06-16

    Abstract: 基于MIC和图神经网络融合的航天器控制系统异常检测方法及系统,涉及故障、异常检测技术领域。解决现有航天器控制系统领域的异常检测方法,由于异常数据主要隐藏在大量的正确点中,难以复制,导致无法完全利用正常数据进行异常检测的问题。方法为将航天控制系统领域多维的时序数据进行MIC分析获得不同变量之间的最大信息系数;进而获得邻接矩阵;从离散变量序列提取出每个变量的时序特征;构建MIC‑图网络并获得预测数据;对预测数据进行判定,获得异常数据。本发明适用于航天器控制系统的故障、异常检测技术领域,可直接用于对于航天器控制系统采集的多维时序数据,并对多维时序数据进行时间段的异常检测和阈值检测判定异常工作。

    具有时间序列状态变量的工业设备故障检测方法

    公开(公告)号:CN114595767A

    公开(公告)日:2022-06-07

    申请号:CN202210223287.9

    申请日:2022-03-07

    Abstract: 一种具有时间序列状态变量的工业设备故障检测方法,属于工业设备故障检测领域。本发明针对现有工业系统的故障检测依赖故障数据建立检测模型,故障数据获取难度大造成方法难以适用的问题。包括:采集时间序列状态数据作为训练数据;计算训练数据m维特征变量的均值和标准差,并对训练数据进行标准化;对标准化后时间序列数据采用滑动窗口进行分割得到序列数据P,对LSTM自编码网络进行训练;再基于训练后LSTM自编码网络获得训练数据的误差序列;基于极值理论的方法对误差序列进行分析,得到故障阈值;再基于待检测设备序列数据对故障阈值进行调整,得到调整后阈值,进而实现工业设备的故障检测。本发明用于变量具有时序特征的工业设备的故障检测。

    具有时间序列状态变量的工业设备故障检测方法

    公开(公告)号:CN114595767B

    公开(公告)日:2025-01-10

    申请号:CN202210223287.9

    申请日:2022-03-07

    Abstract: 一种具有时间序列状态变量的工业设备故障检测方法,属于工业设备故障检测领域。本发明针对现有工业系统的故障检测依赖故障数据建立检测模型,故障数据获取难度大造成方法难以适用的问题。包括:采集时间序列状态数据作为训练数据;计算训练数据m维特征变量的均值和标准差,并对训练数据进行标准化;对标准化后时间序列数据采用滑动窗口进行分割得到序列数据P,对LSTM自编码网络进行训练;再基于训练后LSTM自编码网络获得训练数据的误差序列;基于极值理论的方法对误差序列进行分析,得到故障阈值;再基于待检测设备序列数据对故障阈值进行调整,得到调整后阈值,进而实现工业设备的故障检测。本发明用于变量具有时序特征的工业设备的故障检测。

Patent Agency Ranking