-
公开(公告)号:CN118155024B
公开(公告)日:2024-08-20
申请号:CN202410585235.5
申请日:2024-05-13
Applicant: 国网安徽省电力有限公司电力科学研究院 , 安徽大学 , 国网智能电网研究院有限公司
IPC: G06V10/774 , G06V10/30 , G06V10/34 , G06V10/72 , G06V10/764 , G06V10/82 , G06N3/0475 , G06N3/045 , G06N3/094 , G06N3/0464
Abstract: 本发明提供大模型图像样本自动生成方法及系统,方法包括:采集电网设备的差异光谱图像数据,以作为原始数据,对原始数据进行形态学滤波操作、数据清洗操作以及数据整合操作,以得到模型训练输入数据;利用生成对抗网络GAN进行对抗操作,对模型训练输入图像数据进行训练,以进行样本生成以及样本评估操作,获取稀缺样本;将稀缺样本与实时采集图像混合,利用支持向量机进行标注处理,以构造适用泛化能力新数据集;利用迁移学习技术,在适用泛化能力新数据集上,对预训练ResNet模型进行训练、验证操作,以得到适用电网图像大模型。本发明解决了电网设备监测与诊断操作中存在样本稀缺,导致模型的监测诊断性能受有制约的技术问题。
-
公开(公告)号:CN118154995B
公开(公告)日:2024-07-30
申请号:CN202410572033.7
申请日:2024-05-10
Applicant: 国网安徽省电力有限公司电力科学研究院 , 安徽大学 , 国网智能电网研究院有限公司
IPC: G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82
Abstract: 本发明提供基于时频关联自适应学习模型的图像质量裂化评估方法,包括:构建不同类别的原始图像集;利用傅里叶变换获得频谱图像集;将频谱图像和原始差异类别图像输入到残差神经网络中学习频谱图像特征、原始图像特征;将时频关联的图像特征、原始图像特征融合;输入到动态调节参数BP神经网络;进行图像质量裂化评估分类。本发明解决了分析处理信息不全面,导致图像质量异常分类效果差的技术问题。
-
公开(公告)号:CN118155024A
公开(公告)日:2024-06-07
申请号:CN202410585235.5
申请日:2024-05-13
Applicant: 国网安徽省电力有限公司电力科学研究院 , 安徽大学 , 国网智能电网研究院有限公司
IPC: G06V10/774 , G06V10/30 , G06V10/34 , G06V10/72 , G06V10/764 , G06V10/82 , G06N3/0475 , G06N3/045 , G06N3/094 , G06N3/0464
Abstract: 本发明提供大模型图像样本自动生成方法及系统,方法包括:采集电网设备的差异光谱图像数据,以作为原始数据,对原始数据进行形态学滤波操作、数据清洗操作以及数据整合操作,以得到模型训练输入数据;利用生成对抗网络GAN进行对抗操作,对模型训练输入图像数据进行训练,以进行样本生成以及样本评估操作,获取稀缺样本;将稀缺样本与实时采集图像混合,利用支持向量机进行标注处理,以构造适用泛化能力新数据集;利用迁移学习技术,在适用泛化能力新数据集上,对预训练ResNet模型进行训练、验证操作,以得到适用电网图像大模型。本发明解决了电网设备监测与诊断操作中存在样本稀缺,导致模型的监测诊断性能受有制约的技术问题。
-
公开(公告)号:CN118154447A
公开(公告)日:2024-06-07
申请号:CN202410578624.5
申请日:2024-05-11
Applicant: 国网安徽省电力有限公司电力科学研究院 , 安徽大学 , 国网智能电网研究院有限公司
Abstract: 本发明提供基于引导频率损失函数的图像恢复方法及系统,方法包括:构建第一质量图像数据集、第二质量图像数据集,划分得到训练集、验证集;将相邻两层高斯金字塔图像取出,以对第一质量图像数据集、第二质量图像数据集中的小尺寸图像进行上采样,得到不少于2种相同尺寸图像,做差得到一层输入拉普拉斯图像,将最小尺寸图像作为拉普拉斯金字塔最底层,构建图像拉普拉斯金字塔,根据沙博尼耶损失、拉普拉斯金字塔损失和迭代层次化高频分量损失确定引导频率损失,利用引导频率损失收敛模型;验证模型。本发明解决了图像恢复质量较差、系统鲁棒性较差的技术问题。
-
公开(公告)号:CN118279289B
公开(公告)日:2024-08-27
申请号:CN202410572037.5
申请日:2024-05-10
Applicant: 国网安徽省电力有限公司电力科学研究院 , 安徽大学 , 国网智能电网研究院有限公司
IPC: G06T7/00 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/086
Abstract: 本发明提供一种电力设备视频图像缺陷识别方法及系统,方法包括:预训练初始残差神经网络,以得到适用缺陷分类残差神经网络;初始化问题潜在解粒子群位置、速度;计算每个问题潜在解粒子的适应值;利用粒子群优化算法持续迭代,寻获并更新得到局部更新最优解、全局更新最优解,以更新获取问题潜在解粒子的位置、速度;在满足粒子群优化算法的结束条件时结束持续迭代,根据更新获取的问题潜在解粒子的位置、速度,输出最佳位置参数,以利用适用缺陷分类残差神经网络,处理得到电力设备视频图像中的缺陷坐标位置。本发明解决了电力设备视频图像缺陷识别过程中的标记操作效率低、准确性低、检测模型的计算量大、网络结构复杂的技术问题。
-
公开(公告)号:CN118154995A
公开(公告)日:2024-06-07
申请号:CN202410572033.7
申请日:2024-05-10
Applicant: 国网安徽省电力有限公司电力科学研究院 , 安徽大学 , 国网智能电网研究院有限公司
IPC: G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82
Abstract: 本发明提供基于时频关联自适应学习模型的图像质量裂化评估方法,包括:构建不同类别的原始图像集;利用傅里叶变换获得频谱图像集;将频谱图像和原始差异类别图像输入到残差神经网络中学习频谱图像特征、原始图像特征;将时频关联的图像特征、原始图像特征融合;输入到动态调节参数BP神经网络;进行图像质量裂化评估分类。本发明解决了分析处理信息不全面,导致图像质量异常分类效果差的技术问题。
-
公开(公告)号:CN119813484A
公开(公告)日:2025-04-11
申请号:CN202510312377.9
申请日:2025-03-17
Applicant: 国网安徽省电力有限公司电力科学研究院 , 安徽大学
Abstract: 本发明公开一种电池组主动均衡方法、系统,包括多个串联的电池模组,每个电池模组内包括多个串联的电池单体;电池模组之间通过开关控制该电池模组的切入与切出;每个电池模组内的电池单体之间也通过开关控制该电池单体的切入与切出。本发明采用基于柔性重构的两层拓扑结构,将电池组划分成多个电池模组,且电池模组间与电池模组内的多个电池单体串联方式相同,均通过单刀双掷开关切入切出,为后期在不影响平衡功能的情况下隔离故障单体或模组;为提高均衡时效性和均衡一致性提供硬件基础。
-
公开(公告)号:CN118154447B
公开(公告)日:2024-08-20
申请号:CN202410578624.5
申请日:2024-05-11
Applicant: 国网安徽省电力有限公司电力科学研究院 , 安徽大学 , 国网智能电网研究院有限公司
Abstract: 本发明提供基于引导频率损失函数的图像恢复方法及系统,方法包括:构建第一质量图像数据集、第二质量图像数据集,划分得到训练集、验证集;将相邻两层高斯金字塔图像取出,以对第一质量图像数据集、第二质量图像数据集中的小尺寸图像进行上采样,得到不少于2种相同尺寸图像,做差得到一层输入拉普拉斯图像,将最小尺寸图像作为拉普拉斯金字塔最底层,构建图像拉普拉斯金字塔,根据沙博尼耶损失、拉普拉斯金字塔损失和迭代层次化高频分量损失确定引导频率损失,利用引导频率损失收敛模型;验证模型。本发明解决了图像恢复质量较差、系统鲁棒性较差的技术问题。
-
公开(公告)号:CN118279289A
公开(公告)日:2024-07-02
申请号:CN202410572037.5
申请日:2024-05-10
Applicant: 国网安徽省电力有限公司电力科学研究院 , 安徽大学 , 国网智能电网研究院有限公司
IPC: G06T7/00 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/086
Abstract: 本发明提供一种电力设备视频图像缺陷识别方法及系统,方法包括:预训练初始残差神经网络,以得到适用缺陷分类残差神经网络;初始化问题潜在解粒子群位置、速度;计算每个问题潜在解粒子的适应值;利用粒子群优化算法持续迭代,寻获并更新得到局部更新最优解、全局更新最优解,以更新获取问题潜在解粒子的位置、速度;在满足粒子群优化算法的结束条件时结束持续迭代,根据更新获取的问题潜在解粒子的位置、速度,输出最佳位置参数,以利用适用缺陷分类残差神经网络,处理得到电力设备视频图像中的缺陷坐标位置。本发明解决了电力设备视频图像缺陷识别过程中的标记操作效率低、准确性低、检测模型的计算量大、网络结构复杂的技术问题。
-
公开(公告)号:CN117688322A
公开(公告)日:2024-03-12
申请号:CN202311606560.7
申请日:2023-11-24
Applicant: 国网安徽省电力有限公司电力科学研究院 , 安徽大学
Inventor: 罗沙 , 李宾宾 , 秦金飞 , 黄伟民 , 黄杰 , 叶剑涛 , 邱曼曼 , 秦少瑞 , 马亚彬 , 金晶 , 温睿 , 姜源 , 宋东波 , 韦健 , 卢一相 , 竺德 , 赵大卫
IPC: G06F18/20 , G06N3/0442 , G06N3/045 , G06N3/084 , G06F17/18
Abstract: 本发明提供一种重过载变压器油温预测方法及系统,方法包括:利用BiLSTM对多变量数据进行正反双向预测;通过SparseAttention突出重要输入变量的贡献;使用减法平均优化算法对BiLSTM网络超参数进行寻优,提高油温预测准确性。本发明解决了变压器油温序列数据非线性、非稳定性和多变量相互耦合、相互关联,以及预测模型效率低下、准确性不足的技术问题。
-
-
-
-
-
-
-
-
-