一种基于LSTM-CNN模型的空气质量检测系统

    公开(公告)号:CN115730684A

    公开(公告)日:2023-03-03

    申请号:CN202211575606.9

    申请日:2022-12-09

    Applicant: 安徽大学

    Abstract: 本发明公开了一种基于LSTM‑CNN模型的空气质量检测系统,属于空气质量检测领域,包括回归学习系统、构建学习模型系统、快速预报系统、发布模块和数据检测系统,所述回归学习系统包括环境数据模块、参数变量模块和数据筛选模块,所述数据筛选模块用于对环境数据模块进行特征选择。本发明所述的一种基于LSTM‑CNN模型的空气质量检测系统,本方案基于机器学习技术的区域空气质量预报系统能够高时效地利用现有的所有信息来定义一个最大可能精准的大气运动状态,本方案在空气质量预报预警中对于PM2.5和臭氧结果进行了优化,本方案能够弥补卫星观测数据的缺失,扩展垂直廓线的遥感观测,从有限点位的观测数据中挖掘出内蕴的变化规律。

    基于DBN-OCSVM的空气质量数据异常检测模型

    公开(公告)号:CN116861232A

    公开(公告)日:2023-10-10

    申请号:CN202310660616.0

    申请日:2023-06-06

    Applicant: 安徽大学

    Abstract: 本发明公开了基于DBN‑OCSVM的空气质量数据异常检测模型,包括数据处理阶段、数据异常检测阶段、模型分析阶段;所述数据处理系阶段包括数据的预处理、特征分析以及回归模型分析数据并计算数据影响因子的相关性关系;所述数据异常检测包括数据的整理分析、将提取的时空特征输入到DBN神经网络中,进行监督学习,作为分类器使用;所述模型分析阶段主要包括:首先进行了基于OCSVM高维异常检测,通过运用分类混淆矩阵(Confusion Matrix)来分析其结果。本发明新型涉及空气检测技术领域,具体为具体为基于DBN‑OCSVM的空气质量数据异常检测模型。

Patent Agency Ranking