一种融合相关滤波的GM-PHD视频多目标跟踪方法

    公开(公告)号:CN112541441A

    公开(公告)日:2021-03-23

    申请号:CN202011486143.X

    申请日:2020-12-16

    Applicant: 江南大学

    Abstract: 本发明公开了一种融合相关滤波的GM‑PHD视频多目标跟踪方法,属于计算机视觉、模式识别和信息处理技术领域。所述方法采用相关滤波的思想,对目标进行跟踪,并加入图像信息的相交比判断,来对被遮挡的目标进行不更新目标模板和参数处理,从而减少目标模板的污染,减少误跟框,对于已经被遮挡的目标将会放入高斯混和概率假设密度滤波中进行位置预测更新操作,若后期目标重现将会重新关联上目标标签,从而减少碎片化的轨迹,弥补检测器漏检的缺点。最终通过在MOT17数据集上的结果证明,与目前有关GM‑PHD最好的跟踪算法GMPHDOGM17相比,多目标跟踪正确度MOTA指标上从原来的49.9提高至50.3。

    一种融合运动信息的核相关滤波多目标跟踪方法

    公开(公告)号:CN111292355B

    公开(公告)日:2023-06-16

    申请号:CN202010089349.2

    申请日:2020-02-12

    Applicant: 江南大学

    Abstract: 本发明公开了一种融合运动信息的核相关滤波多目标跟踪方法,属于计算机视觉、智能信息处理领域。本发明在检测跟踪的基础上,引入了KCF进行多目标的跟踪,减少对检测器的过分依赖,实现对多个目标的精确跟踪;跟踪过程中将速度信息和SCCM机制结合到跟踪框架中,从而处理遮挡目标的跟踪以及跟踪框漂移问题;最后采用IOU和历史轨迹信息,对虚假目标进行判断,从而减少轨迹碎片。实验表明,本发明具有良好的跟踪效果和鲁棒性,能广泛满足智能视频监控、人机交互、智能交通管制等系统的实际设计需求。

    一种基于多伯努利分布式多传感器多目标跟踪方法

    公开(公告)号:CN110967690A

    公开(公告)日:2020-04-07

    申请号:CN201911099150.1

    申请日:2019-11-12

    Applicant: 江南大学

    Abstract: 本发明公开了一种基于多伯努利分布式多传感器多目标跟踪方法,属于智能信息处理技术和信号处理领域。本发明的基于多伯努利滤波框架的分布式多传感器的目标跟踪方法采用了三种精度提升方法,包括交互反馈方法、决策级融合输出方法以及特征级融合反馈方法,既可以解决对新生目标漏估计的问题,同时也提高了对多目标跟踪的精度。

    一种融合相关滤波的GM-PHD视频多目标跟踪方法

    公开(公告)号:CN112541441B

    公开(公告)日:2024-08-27

    申请号:CN202011486143.X

    申请日:2020-12-16

    Applicant: 江南大学

    Abstract: 本发明公开了一种融合相关滤波的GM‑PHD视频多目标跟踪方法,属于计算机视觉、模式识别和信息处理技术领域。所述方法采用相关滤波的思想,对目标进行跟踪,并加入图像信息的相交比判断,来对被遮挡的目标进行不更新目标模板和参数处理,从而减少目标模板的污染,减少误跟框,对于已经被遮挡的目标将会放入高斯混和概率假设密度滤波中进行位置预测更新操作,若后期目标重现将会重新关联上目标标签,从而减少碎片化的轨迹,弥补检测器漏检的缺点。最终通过在MOT17数据集上的结果证明,与目前有关GM‑PHD最好的跟踪算法GMPHDOGM17相比,多目标跟踪正确度MOTA指标上从原来的49.9提高至50.3。

    一种基于IOU匹配的双滤波器视频多目标跟踪方法

    公开(公告)号:CN111754545A

    公开(公告)日:2020-10-09

    申请号:CN202010547158.6

    申请日:2020-06-16

    Applicant: 江南大学

    Abstract: 本发明公开了一种基于IOU匹配的双滤波器视频多目标跟踪方法,属于信息处理技术领域。本发明在多伯努利滤波中,引入相关滤波器作为弱滤波器来采样粒子,首先提取泛化能力较强的VGG19网络卷积特征训练多个相关滤波器,利用训练好的相关滤波器,得到多个目标状态估计,最后对得到的目标状态集进行扩充作为采样的粒子集。本发明能有效减少标签跳变和轨迹碎片,提高目标跟踪精度。

    一种融合运动信息的核相关滤波多目标跟踪方法

    公开(公告)号:CN111292355A

    公开(公告)日:2020-06-16

    申请号:CN202010089349.2

    申请日:2020-02-12

    Applicant: 江南大学

    Abstract: 本发明公开了一种融合运动信息的核相关滤波多目标跟踪方法,属于计算机视觉、智能信息处理领域。本发明在检测跟踪的基础上,引入了KCF进行多目标的跟踪,减少对检测器的过分依赖,实现对多个目标的精确跟踪;跟踪过程中将速度信息和SCCM机制结合到跟踪框架中,从而处理遮挡目标的跟踪以及跟踪框漂移问题;最后采用IOU和历史轨迹信息,对虚假目标进行判断,从而减少轨迹碎片。实验表明,本发明具有良好的跟踪效果和鲁棒性,能广泛满足智能视频监控、人机交互、智能交通管制等系统的实际设计需求。

Patent Agency Ranking