利用在线均质化处理改善含硫钢中硫化物形态的工艺方法

    公开(公告)号:CN107475498A

    公开(公告)日:2017-12-15

    申请号:CN201710605576.4

    申请日:2017-07-21

    CPC classification number: C21D8/0226 C21D6/005 C21D6/008 C21D2211/001

    Abstract: 本发明提供了一种利用在线均质化处理改善含硫钢中硫化物形态的方法,该方法提出了一种新的、优化的含硫钢加热和轧制工艺流程:铸坯→奥氏体温度以上充分奥氏体化→初轧→中间坯均质化处理→二次开坯连续轧制→最终尺寸。该方法不另添加任何化学试剂,只通过优化的加热和轧制工艺技术,使含硫非调质钢的硫化物形态控制水平提高,从而降低了长条状硫化物对钢性能的恶化,改善了含硫钢的机械性能。并且,该技术方案因设定好了技术方法和技术数据,如加热温度、加热时间、下压量等,实施起来简洁方便、有据可依,十分有利于含硫钢的生产、推广和应用,具有重大的社会和经济效益。

    射钉试样精确判断铸坯坯壳厚度原位分析方法

    公开(公告)号:CN103940351B

    公开(公告)日:2017-05-31

    申请号:CN201410129036.X

    申请日:2014-04-01

    Abstract: 本发明是一种射钉试样精确判断铸坯坯壳厚度原位分析方法,属于连铸技术领域。本方法是将射钉试样加工成50~90mm×80~150mm的原位分析试样并进行连续光谱扫描分析,根据各元素浓度沿钉身方向的变化规律,定量、精确地判断连铸坯固相区以及两相区不同液相率区域之间的界限,研究凝固末端铸坯内部的流动和扩散情况并对各种元素的含量分布和基体致密度进行分析,可以精确获得连铸二冷过程指定位置处铸坯坯壳厚度、两相区不同液相率区域的宽度。这些指标明确反应了铸坯冷却水量、拉速、电磁搅拌等工艺控制的优劣,对铸坯质量改善和工艺提高具有重要的影响。因此,本发明对于连铸领域有重要的借鉴和指导意义。

    一种用于转炉偏底出钢的方法

    公开(公告)号:CN101368223A

    公开(公告)日:2009-02-18

    申请号:CN200810223686.5

    申请日:2008-10-07

    Abstract: 一种用于转炉偏底出钢的方法,其特征是将转炉出钢口设计在转炉下部,出钢口最上端位置在钢液面下,最下端高于出钢后炉内仅剩炉渣后的熔渣面10~20厘米,出钢口的直径为10~20厘米,当冶炼达到终点后,将转炉倾斜20°~60°角,旋转的角度使出钢口位置位于转炉最下方,打开出钢口,钢液流入置于其下的钢包,钢液流完后,将转炉恢复正常的竖直位置,移走钢包,此时炉渣液面低于转炉出钢口最低位置;然后将渣包置于转炉下方,倾倒转炉使炉口向下,从转炉炉口倒出炉渣。本发明解决了转炉出钢时的带渣问题,保证转炉的带渣量低于0.5kg/t。不仅能减少钢水回磷,提高合金收得率;还可以减少钢中夹杂物,提高钢液的清洁度。而且可以缩短精炼时间,提高脱硫率。

    一种炼钢过程中真空精炼物理模拟试验方法及装置

    公开(公告)号:CN104164537B

    公开(公告)日:2016-05-25

    申请号:CN201410426265.8

    申请日:2014-08-26

    Abstract: 本发明提供一种炼钢过程中真空精炼物理模拟试验方法及装置,方法包括:根据待测RH真空精炼装置建立模拟装置;运行模拟装置,并在模拟装置中添加示踪粒子;利用激光器照射下降管垂直截面;利用相机对激光器照射的垂直截面进行连续拍摄;根据测量图像中示踪粒子的移动距离和示踪粒子的拍摄时间生成垂直截面的流体速度分布;对不同垂直截面的流体速度进行拟合和积分,得到RH的循环流量。通过在模拟装置中添加示踪粒子,并利用激光照射垂直截面,利用相机进行连续拍照,获取示踪粒子的移动距离和时间生成垂直截面的流体速度分布,经过拟合和积分得到RH的循环流量,不仅提高了截面的流体速度的测量精度,而且降低了对测量模型内流场的影响。

    一种钛处理改善钢中硫化物形态的方法

    公开(公告)号:CN111041326B

    公开(公告)日:2022-01-18

    申请号:CN201911194152.9

    申请日:2019-11-28

    Abstract: 本发明属于冶金工艺技术领域,涉及一种钛处理改善钢中硫化物形态的方法,方法通过调整钢中钛和N含量,并调整凝固前沿的冷却速度来控制TiN和MnS的析出、长大时机及顺序,提高钢中复合硫化物比例,硫化物由集中的长条状转变为分散的球状或纺锤状。具体操作为:在含硫钢中以钛合金或钛线等各种形式加入钛,使钢中钛含量达到0.02‑0.2%,同时,通过控制钢水凝固过程的冷却速度,保证铸锭在液相线温度至900℃凝固前沿区间的冷却速度为0.1‑10℃/s,使钢中生成各类含钛复合硫化物,或者为以TiN为核心的MnS,或者TiN钉扎在MnS周围,或者TiN与MnS伴生,从而减轻了硫化物在后续轧制(锻造)过程中的延长。

Patent Agency Ranking