Abstract:
A circuit board structure includes an inner circuit structure and a first build-up circuit structure. The inner circuit structure includes a core layer having an upper surface and a lower surface, a first patterned circuit layer disposed on the upper surface, a second patterned circuit layer disposed on the lower surface and a conductive through hole connecting the first and the second patterned circuit layers. The first build-up circuit structure at least has a cavity and an inner dielectric layer. The inner dielectric layer has an opening communicating the cavity and a pad of the first patterned circuit layer is located in the opening. A hole diameter of the opening is smaller than a hole diameter of cavity. An inner surface of the inner dielectric layer exposed by the cavity and a top surface of the pad are coplanar or have a height difference.
Abstract:
A manufacturing method of a circuit board structure is described as follows. An inner circuit structure including a core layer having an upper and an opposite lower surface, a first patterned circuit layer disposed on the upper surface and a second patterned circuit layer disposed on the lower surface is provided. An insulating material layer is formed on a portion of the first patterned circuit layer. A laser resisting layer is formed on at least a portion of the insulating material layer. A release layer is adhered to the laser resisting layer. A build-up process is performed so as to laminate a first and a second build-up circuit structures on the first and the second patterned circuit layers, respectively. A laser ablation process is performed on the first build-up circuit structure so as to form a cavity at least exposing a portion of the upper surface of the core layer.
Abstract:
An optical component including a multi-layer substrate, an optical waveguide element, and two optical-electro assemblies is provided. The multi-layer substrate includes a dielectric layer, two circuit layers, and two through holes passing through the dielectric layer. The optical waveguide element is located on the multi-layer substrate and between the through holes. The optical-electro assemblies are respectively inserted into the corresponding through holes and correspondingly located at two opposite ends of the optical waveguide element. One of the optical-electro assemblies transforms an electrical signal into a light beam and provides the light beam to the optical waveguide element, and the other one of the optical-electro assemblies receives the light beam transmitted from the optical waveguide element and transforms the light beam into another electrical signal. A manufacturing method of the optical component and an optical-electro circuit board having the optical component are also provided.
Abstract:
Provided is a package structure including a circuit board, a plurality of first contact pads, a plurality of metal pillars and at least one chip. The first contact pads are disposed on the circuit board. The chip is disposed on one portion of the first contact pads. The metal pillars are disposed on the other portion of the first contact pads, where the chip is surrounded by the metal pillars. A method for manufacturing the package structure is also provided.
Abstract:
A vehicle door opening warning system including a control unit, a projection unit and a detection unit is provided. The control unit is disposed at a door of a vehicle. The projection unit is disposed at the door and is electrically coupled to the control unit. The detection unit is disposed outside of the vehicle and is electrically coupled to the control unit. When the detection unit detects a moving object existing within 5 to 30 meters of the vehicle, the detection unit produces a signal. The control unit receives the signal and controls the projection unit to project a warning message according to the signal. A vehicle door opening warning method is also provided.
Abstract:
A carrier substrate includes a dielectric layer, a first circuit layer, an insulation layer, conductive blocks, and a first conductive structure. The dielectric layer has a first surface, a second surface, and blind vias. The first circuit layer is embedded in the first surface and the blind vias extend from the second surface to the first circuit layer. The insulation layer is disposed on the first surface and has a third surface, a fourth surface, and first openings exposing the first circuit layer. The conductive blocks fill the first openings and connect with the first circuit layer. A top surface of each of the conductive blocks is higher than the third surface of the insulation layer. The first conductive structure includes conductive vias filling the blind vias and a second circuit layer disposed on a portion of the second surface.
Abstract:
A circuit board with a heat-recovery function includes a substrate, a heat-storing device, and a thermoelectric device. The heat-storing device is embedded in the substrate and connected to a processor for performing heat exchange with the processor. The thermoelectric device embedded in the substrate includes a first metal-junction surface and a second metal-junction surface. The first metal-junction surface is connected to the heat-storing device for performing heat exchange with the heat-storing device. The second metal-junction surface is joined with the first metal-junction surface, in which the thermoelectric device generates an electric potential by a temperature difference between the first metal-junction surface and the second metal-junction surface.
Abstract:
A manufacturing method of a circuit board comprises the following steps. Firstly, provide a first core layer, a second core material layer, and a central dielectric material layer. Secondly, press the first core layer, the second core material layer, and the central dielectric material layer to form a composite circuit structure. Thirdly, removing a portion of the central dielectric material layer located at a periphery of a pre-removing area and a portion of the second core material layer located at the periphery of the pre-removing area. Finally, remove a portion of the central dielectric material layer located within the pre-removing area and a portion of the second core material layer located within the pre-removing area to form a central dielectric layer and a second core layer.
Abstract:
A carrier substrate includes a dielectric layer, a first circuit layer, an insulation layer, conductive blocks, and a first conductive structure. The dielectric layer has a first surface, a second surface, and blind vias. The first circuit layer is embedded in the first surface and the blind vias extend from the second surface to the first circuit layer. The insulation layer is disposed on the first surface and has a third surface, a fourth surface, and first openings. The first openings expose the first circuit layer and an aperture of each first opening is increased gradually from the third surface to the fourth surface. The conductive blocks fill the first openings and connect with the first circuit layer. The first conductive structure includes conductive vias filling the blind vias and a second circuit layer disposed on a portion of the second surface.
Abstract:
A carrier board having two opposite surfaces is provided and a releasing film and a metal layer are formed on the two opposite surfaces respectively. Each metal layer formed with positioning pads is covered with a first hot-melt-dielectric layer where a passive component is disposed. The passive component has upper and lower surfaces each having electrode pads. Each first hot-melt-dielectric layer is disposed on a core board having a cavity to receive the passive component. A second hot-melt-dielectric layer is stacked on each core board. The first and second hot-melt-dielectric layers are heat pressed to form two dielectric layer units each having a top surface and a bottom surface. The carrier board and the releasing films are removed to separate the dielectric layer units. Wiring layers are formed on each top surface and each bottom surface and electrically connected to the electrode pads of the upper and lower surfaces respectively.