Abstract:
A system for selectably electrically pulsing each of a plurality of ultrasonic transducers in a testing apparatus in rapid sequence to produce a pattern of ultrasonic energy transmitted into and subsequently received from a test piece comprises a plurality of transducer pulsing circuits, each connected to a different associated one of the transducers. Each pulsing circuit includes a silicon control rectifier connected to ground and a capacitor, connected between the rectifier and the associated transducer, that is dischargeable to pulse the associated tranducer. The rectifier is switchable to an "on" condition to rapidly discharge the capacitor to ground. The rectifier maintains the "on" condition until current conducted through it drops below a characteristic holding current and thereafter switches to an "off" condition. A two-state regulated voltage source is connected to the junction between the rectifier and the capacitor in each of the pulsing circuits to provide a proper charging source for the capacitor. The regulated voltage source is maintained in a high-impedance, voltage-source state designed to maintain an existing capacitor charge in spite of device leakage currents while maintaining a current level less than the rectifier holding current. Individual capacitors are isolated by a diode "and" network in the charging current path. A quick recharge, current-source state is established to recharge the capacitors at a controlled rate to a regulated voltage level. When the desired voltage is reached, the regulated voltage source reverts to its voltage-source state to maintain the voltage until the next such cycle of operation.
Abstract:
My invention teaches a vehicular signal apparatus, in particular a motor vehicle horn system, which has two successive loudness levels of operation. The first loudness level is a moderate level used as a brief "toot" to give a quick alert, as in pedestrian traffic or the like. The second loudness level is a commanding level used as a blast, as for example, in an emergency maneuver in heavy traffic. Operation is automatic, in the sense that a brief operator activation of the horn signal switch will result only in the activation of the moderate level horn, whereas operation of the blast horn is delayed such that continuous operator activation of the horn signal switch will cause the blast horn to blow within about a second after horn switch contact is made.
Abstract:
A polarizing D.C. voltage is generated at the capacitance of the ultrasonic transducer and then short-circuited by a parallel-arranged electronic switch controlled by the command signal frequency to be radiated. A direct current stored in an inductance during this short-circuit phase is supplied via a decoupling diode to the electrodes of the ultrasonic transducer upon opening of the switch, and after having been transformed into a voltage. The polarizing D.C. voltage is thus re-generated periodically.
Abstract:
A fluid device includes a chamber that is provided with an inlet and an outlet opened at different positions on an X axis and is formed with a flow path space in which a fluid is caused to flow from the inlet to the outlet, a first ultrasonic element configured to generate a standing wave in a direction along an X axis in the fluid in the chamber, a driver configured to drive the first ultrasonic element, and a drive controller configured to control the driver such that a drive voltage applied to the first ultrasonic element is reduced over time.
Abstract:
A system for processing biological or other samples includes an array of transducer elements that are positioned to align with sample wells in a microplate. Each transducer element produces ultrasound energy that is focused towards a well of the microplate with sufficient acoustic pressure to cause inertial cavitation. In one embodiment, the transducers are configured to direct ultrasound energy into cylindrical wells. In other embodiments, the transducer elements are configured to direct ultrasound energy into non-cylindrical wells of a microplate.
Abstract:
An End effector is disclosed. The exemplary end effector includes a substrate-supporting body for placing the substrate thereon; and a first array of wave generators disposed in the substrate-supporting body and configured to generate a surface wave to a backside of the substrate.
Abstract:
An example apparatus operable to provide power to a transducer via a regulator output, the power regulator comprising: filter circuitry including a filter input and a filter output, the filter output coupled to the regulator output; amplifier circuitry including an amplifier input and an amplifier output, the amplifier output coupled to the filter input; sensing circuitry including a sensing input and a sensing output, the sensing input coupled to the filter output and the regulator output; and a controller including a controller input coupled to the sensing output and including a controller output coupled to the amplifier input, the controller configured to: supply an excitation signal to the amplifier circuitry to cause the amplifier circuitry to supply the power based on the excitation signal; estimate a magnitude of the power based on measurements of current and voltage at the filter output.
Abstract:
An ultrasonic sensor in the invention includes an ultrasonic transmitter, an ultrasonic receiver, and a detector. The ultrasonic transmitter transmits pulse-shaped ultrasonic waves to a thin plate to excite the thin plate. The ultrasonic receiver receives direct waves and reflected waves among the ultrasonic waves propagating in the thin plate excited by the pulse-shaped ultrasonic waves, the direct waves propagating only in the thin plate, and the reflected waves radiating outward, then reflected by the object, and returning to the thin plate. The detector detects the object present near the thin plate on the basis of a difference between a time at which the ultrasonic receiver receives the direct waves and a time at which the ultrasonic receiver receives the reflected waves.
Abstract:
An apparatus for processing articles with acoustic energy and a method of constructing a transducer that utilizes a composite of piezoelectric pillars. In one embodiment, the invention is a method of constructing a device for generating acoustic energy comprising: providing a layer of supporting material; positioning a piezoelectric material atop the layer of adhesive material; cutting the piezoelectric material into a plurality of pillars so that spaces exist between adjacent pillars; and filling the spaces with a resilient material to form a composite assembly.