Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A pump having: a cavity formed inside an insulating substrate, the upper part of the substrate being situated near the cavity having an edge; a conductive layer covering the inside of the cavity up to the edge and optionally covering the edge itself; a flexible membrane made of a conductive material placed above the cavity and resting against the edge; a dielectric layer covering the conductive layer or the membrane whereby insulating the portions of the conductive layer and of the membrane that are near one another; at least one aeration line formed in the insulating substrate that opens into the cavity via an opening in the conductive layer, and; terminals for applying a voltage between the conductive layer and the membrane.
Abstract:
A pump is provided that includes a nanometer-scale beam that is suspended in a housing. The housing may include a number of apertures such that molecules can move in and out of the housing. The nanometer-scale beam may be suspended as a jump rope or as a cantilever. The movement of the nanometer-scale beam may be mechanically stopped from moving in a particular way (e.g., towards a particular end of the housing). Thus, for example, the beam and the stop work together to pump molecules in the direction that the beam bounces off the stop. The speed and movement of the nanometer-scale beam can also be influenced either electrostatically or electromagnetically. As such, the speed and direction that a working substance is pumped by a nanometer-scale beam may be electrically controlled.
Abstract:
A micromechanical component having a substrate made from a substrate material having a first doping type, a micromechanical functional structure provided in the substrate and a cover layer to at least partially cover the micromechanical functional structure. The micromechanical functional structure has zones made from the substrate material having a second doping type, the zones being at least partially surrounded by a cavity, and the cover layer has a porous layer made from the substrate material.
Abstract:
A micromachined fluid handling device having improved properties. The valve is made of reinforced parylene. A heater heats a fluid to expand the fluid. The heater is formed on unsupported silicon nitride to reduce the power. The device can be used to form a valve or a pump. Another embodiment forms a composite silicone/parylene membrane. Another feature uses a valve seat that has concentric grooves for better sealing operation.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A micromachined fluid handling device having improved properties. The valve is made of reinforced parylene. A heater heats a fluid to expand the fluid. The heater is formed on unsupported silicon nitride to reduce the power. The device can be used to form a valve or a pump. Another embodiment forms a composite silicone/parylene membrane. Another feature uses a valve seat that has concentric grooves for better sealing operation.
Abstract:
A MEMS device includes a substrate having a cavity and a membrane structure mechanically connected to the substrate and configured for deflecting out-of-plane with regard to a substrate plane and with a frequency in an ultrasonic frequency range to cause a fluid motion of the fluid in the cavity. The MEMS device includes a valve structure sandwiching the cavity together with the membrane structure, wherein the valve structure includes a planar perforated structure and a shutter structure opposing the perforated structure and arranged movably in-plane and with a frequency in the ultrasonic frequency range and with regard to the substrate plane and between a first position and a second position. The shutter structure is arranged to provide a first fluidic resistance for the fluid in the first position and a second, higher fluidic resistance for the fluid in the second position.