Abstract:
An efficient combined advanced treatment method of electroplating wastewater is disclosed, which belongs to the technical field of electroplating wastewater treatment. The method includes: after pretreatments including cyanide breaking, dechromisation and coagulating sedimentation, introducing the electroplating wastewater to a contact oxidation tank for biochemical treatment, and settling the effluent from the contact oxidation tank down in an inclined pipe of a secondary sedimentation tank to realize the separation of the sludge from water; charging the effluent to a coagulating sedimentation tank, and undergoing coagulating sedimentation with the aid of a flocculant and a coagulant aid added; feeding the effluent, as an influent, to a resin adsorption tank for adsorption with a magnetic resin; and after passing through a filter, flowing the effluent after adsorption to a fixed bed resin adsorption unit, so as to realize the discharge up to standard and recycle of the effluent.
Abstract:
A water treatment system includes a water treatment unit and insulators. The water treatment unit is provided in an intermediate portion of a water passage allowing target water to flow, and produces bactericidal factors in the target water utilizing a discharge. The insulators are provided at an inflow side and an outflow side of the water treatment unit, respectively, and electrically insulate the water flowing to and out of the water treatment unit from the water treatment unit. The insulator at the inflow side sprays the target water to insulate the water. The insulator at the outflow side allows the target water to fall down from the water treatment unit to insulate the water.
Abstract:
A system and method for treating flowing water systems with a plasma discharge to remove or control growth of microbiological species. Components of the water system are protected from being damaged by excess energy from the electrohydraulic treatment. Ozone gas generated by a high voltage generator that powers the plasma discharge is recycled to further treat the water. A gas infusion system may be used to create fine bubbles of ozone, air, or other gases in the water being treated to aid in plasma generation, particularly when the conductivity of the water is high. An electrode mounting assembly maintains a high voltage electrode and ground electrode at a fixed distance from each other to optimize plasma generation. An open support structure for the high voltage generator circuit physically separates spark gap electrodes and resists metal deposits that may disrupt discharge of a high voltage pulse to create the plasma.
Abstract:
A bulk boron doped diamond electrode comprising a plurality of grooves disposed in a surface of the bulk boron doped diamond electrode. The bulk boron doped diamond electrode is formed by growing a bulk boron doped diamond electrode using a chemical vapour deposition technique and forming a plurality of grooves in a surface of the bulk boron doped diamond electrode. According to one arrangement, the plurality of grooves are formed by forming a pattern of carbon solvent metal over a surface of the bulk boron doped diamond electrode and heating whereby the carbon solvent metal dissolves underlying diamond to form grooves in the surface of the bulk boron doped electrode. The invention also relates to an electrochemical cell comprising one or more grooved bulk boron doped diamond electrodes. The or each bulk boron doped diamond electrode is oriented within the electrochemical device such that the grooves are aligned in a direction substantially parallel to a direction of electrolyte flow.
Abstract:
An equipment for disposal of cyanobacteria in stagnant waters has a float structure, to which two types of bipolar electrodes (1 and 6) are mounted under the surface of water, interconnected and supplied with electric direct current via an alternator (10). The equipment comprises a supporting float (5) having the shape of a hollow body, in which there is a transversely positioned rib (4) with an attached suspended electrode (1), interconnected to supplies of photovoltaic cells (8) and alternator (10), fixed on the rib (4) there is the device (9) for utilizing wind power, connected to an alternator (10), driving the water pump (2), which is placed in the delivery pipe (3) and is connected directly to the axis of the device (9), for utilization of wind power. Fixed on the supporting float (5) there is the upper float (7) with the anchored grid electrode (6) and with the stored photovoltaic cells (8), interconnected with the electrodes (1) and (6). The delivery pipe (3) is connected to the water pump (2), and the outlet of the delivery pipe (3) is positioned directly above the suspended electrode (1). The upper float (7) copies the shape of the supporting float (5) and is made of a dielectric, light, floating material. The method of disposal of cyanobacteria in stagnant waters is based on quatrolytic disposal of cyanobacteria by the electroflotation method, by means of the above-mentioned equipment.
Abstract:
A photoelectrocatalytic oxidizing device having a photoanode being constructed from a conducting metal such as Ti as the support electrode. Alternatively, the photoanode is a composite electrode comprising a conducting metal such as Ti as the support electrode coated with a thin film of sintered nanoporous TiO2. The device is useful in methods for treating an aqueous solution such as groundwater, wastewater, drinking water, ballast water, aquarium water, and aquaculture water to reduce amounts of a contaminant. The method being directed at reducing the amount and concentration of contaminants in an aqueous solution comprising providing an aqueous solution comprising at least one contaminant, and, photoelectrocatalytically oxidizing the contaminant, wherein the contaminant is oxidized by a free radical produced by a photoanode constructed from an anatase polymorph of Ti, a rutile polymorph of Ti, or a nanoporous film of TiO2.
Abstract:
Corrosion Resistant Ozone Generators, including ozone generating chips, for various purposes including spas, pools and jetted tubs as well as methods for making and using such Corrosion Resistant Ozone Generators.
Abstract:
Contaminants are removed from raw water or discharge water from plants, such as sewerage and industrial plants, by applying direct current through an array of spaced, alternately charged electrodes to eliminate or minimize clogging of the electrodes with precipitated contaminants. Polarity may be switched periodically to assist in eliminating or minimizing clogging. In illustrated embodiments, electrode arrays are contained in housings of dielectric material to form modules, To increase processing capacity, the modules are arranged in parallel arrays. Alternatively, a single module is scaled up for large or industrial applications or scaled down for personal use. Instead of housing the electrode arrays in modules through which liquid passes, the electrode arrays for some batch applications are dipped in the water or aqueous solutions.
Abstract:
Cell frame for high-pressure water electrolyzer and method of manufacturing the same. According to one embodiment, radial openings in a water electrolyzer frame are provided by laminating half-frames, one or both of which contains grooves that may be formed by molding, machining or die-cutting. Another to another embodiment, radial openings are provided by laminating three or more thin frame portions, the center piece of which may include transverse slots that may be made by molding, machining or die-cutting. According to yet another embodiment, two or more frame portions are provided, at least one of which includes a recess for receiving a porous structure. The frames of the present invention can be additionally laminated to the membrane and electrode assembly, as well as the bipolar separator plate in the perimeter or seal area, comprised of the same or similar material as the frame, to form unitized electrolyzer stack subassemblies or full assemblies.
Abstract:
A method and apparatus for treating water or wastewater for drinking and/or industrial use. The method and apparatus comprises of a plurality of vertically positioned electrodes, which are placed in a treating chamber and wherein the electrodes are interconnected to one another. The positive and negative electrodes are insulated there-between. The polarity of the direct current supply is changeable at regular intervals in order to prevent passivation of the electrodes when reaching an even abrasion. The current can preferably be pulsatory. In order to be able to keep the current density between the electrodes at a desired value, the most efficient possible electrolysis is achieved by means of a minimum total current and wherein the spacing between the electrodes are adjustable.