Abstract:
Titania-doped quartz glass is manufactured by mixing a silicon-providing reactant gas and a titanium-providing reactant gas, preheating the reactant gas mixture at 200-400° C., and subjecting the mixture to oxidation or flame hydrolysis. A substrate of the glass is free of concave defects having a volume of at least 30,000 nm3 in an effective region of the EUV light-reflecting surface and is suited for use in the EUV lithography.
Abstract:
Ultralow expansion titania-silica glass. The glass has high hydroxyl content and optionally include one or more dopants. Representative optional dopants include boron, alkali elements, alkaline earth elements or metals such as Nb, Ta, Al, Mn, Sn Cu and Sn. The glass is prepared by a process that includes steam consolidation to increase the hydroxyl content. The high hydroxyl content or combination of dopant(s) and high hydroxyl content lowers the fictive temperature of the glass to provide a glass having a very low coefficient of thermal expansion (CTE), low fictive temperature (Tf), and low expansivity slope.
Abstract:
On the basis of a known method for producing a blank of titanium-doped glass with a high silica content (glass) for a mirror substrate for use in EUV lithography which has a surface region that has an outer contour, is intended to be provided with a reflective coating and is specified as a highly loaded zone when the mirror substrate is used as intended, in order to provide a blank which can be produced at low cost and nevertheless meets high requirements with respect to homogeneity and freedom from blisters and striae, a procedure which comprises the following method steps is proposed: (a) producing a front body of titanium-doped high-quality glass with dimensions more than large enough to enclose the outer contour, (b) producing a cylindrical supporting body from titanium-doped glass, (c) bonding the front body and the supporting body to form a composite body, and (d) working the composite body to form the mirror substrate blank, wherein the step of producing the front body comprises a homogenizing process involving twisting a starting body obtained in the form of a strand by flame hydrolysis of a silicon-containing compound to form a front body blank, and the supporting body is formed as a monolithic glass block with less homogeneity than the front body.
Abstract:
A high silica glass composition comprising about 92 to about 99.9999 wt. % SiO2 and from about 0.0001 to about 8 wt. % of at least one dopant selected from Al2O3, CeO2, TiO2, La2O3, Y2O3, Nd2O3, other rare earth oxides, and mixtures of two or more thereof. The glass composition has a working point temperature ranging from 600 to 2,000° C. These compositions exhibit stability similar to pure fused quartz, but have a moderate working temperature to enable cost effective fabrication of pharmaceutical packages. The glass is particularly useful as a packaging material for pharmaceutical applications, such as, for example pre-filled syringes, ampoules and vials.
Abstract translation:高二氧化硅玻璃组合物包含约92-约99.9999wt。 %SiO 2和约0.0001-约8wt。 选自Al 2 O 3,CeO 2,TiO 2,La 2 O 3,Y 2 O 3,Nd 2 O 3,其它稀土氧化物中的至少一种掺杂剂的%,以及其两种或更多种的混合物。 玻璃组合物的工作点温度范围为600至2000℃。这些组合物表现出与纯熔融石英相似的稳定性,但具有适度的工作温度以使药物包装成本有效地制造。 该玻璃特别可用作药物应用的包装材料,例如预填充注射器,安瓿和小瓶。
Abstract:
The Ti3+ ions present in Ti-doped silica glass cause a brown staining of the glass, causing inspection of the lens to become more difficult. Known methods for reducing Ti3+ ions in favor of Ti4+ ions in Ti-doped silica glass include a sufficiently high proportion of OH-groups and carrying out an oxygen treatment prior to vitrification, which both have disadvantages. In order to provide a cost-efficient production method for Ti-doped silica glass, which at a hydroxyl group content of less than 120 ppm shows an internal transmittance (sample thickness 10 mm) of at least 70% in the wavelength range of 400 nm to 1000 nm, the TiO2—SiO2 soot body is subjected to a conditioning treatment with a nitrogen oxide prior to vitrification. The blank produced in this way from Ti-doped silica glass has the ratio Ti3+/Ti4+≦5×10−4.
Abstract:
The invention relates to an extra-clear glass sheet, i.e. a glass sheet with high energy transmission, which can be used in particular in the field of solar energy. Specifically, the invention relates to a glass sheet having a composition that includes, in an amount expressed in wt % for the total weight of the glass: 60-78% of SiO2; 0-10% of Al2O3; 0-5% of B2O3; 0-15% of CaO; 0-10% of MgO; 5-20% of Na2O; 0-10% of K2O; 0-5% of BaO, wherein the total amount of iron (in the form of Fe2O3) is 0.002-0.03%, and the composition includes a ratio of manganese/(total iron) of 1 to 8.5, the manganese content being expressed in the form of MnO in wt % relative to the total weight of the glass.
Abstract:
A glass article for use in Extreme Ultra-Violet Lithography (EUVL) is provided. The glass article includes a silica-titania glass having a compositional gradient through the glass article, the compositional gradient being defined by the functions: [TiO2]=(c+f(x,y,z)), and [SiO2]=(100−{c+f(x,y,z)}−δ(x,y,z)) wherein [TiO2] is the concentration of titania in wt. %, [SiO2] is the concentration of silica in wt. %, c is the titania concentration in wt. % for a predetermined zero crossover temperature (Tzc), f(x, y, z) is a function in three-dimensional space that defines the difference in average composition of a volume element centered at the coordinates (x, y, z) with respect to c, and δ(x, y, z) is a function in three-dimensional space that defines the sum of all other components of a volume element centered at the coordinates (x, y, z).
Abstract:
A method for manufacturing an SiO2—TiO2 based glass upon a target by a direct method, includes: an ingot growing step of growing an SiO2—TiO2 based glass ingot having a predetermined length on the target by flame hydrolysis by feeding a silicon compound and a titanium compound into an oxyhydrogen flame, wherein the ingot growing step includes: a first step of increasing a ratio of a feed rate of the titanium compound to a feed rate of the silicon compound as the SiO2—TiO2 based glass ingot grows until the ratio reaches a predetermined value; and a second step of gradually growing the SiO2—TiO2 based glass ingot after the ratio has reached the predetermined value in the first stage with keeping the ratio within a predetermined range.
Abstract:
On the basis of a known method for producing a blank of titanium-doped glass with a high silica content (glass) for a mirror substrate for use in EUV lithography which has a surface region that has an outer contour, is intended to be provided with a reflective coating and is specified as a highly loaded zone when the mirror substrate is used as intended, in order to provide a blank which can be produced at low cost and nevertheless meets high requirements with respect to homogeneity and freedom from blisters and striae, a procedure which comprises the following method steps is proposed: (a) producing a front body of titanium-doped high-quality glass with dimensions more than large enough to enclose the outer contour, (b) producing a cylindrical supporting body from titanium-doped glass, (c) bonding the front body and the supporting body to form a composite body, and (d) working the composite body to form the mirror substrate blank, wherein the step of producing the front body comprises a homogenizing process involving twisting a starting body obtained in the form of a strand by flame hydrolysis of a silicon-containing compound to form a front body blank, and the supporting body is formed as a monolithic glass block with less homogeneity than the front body.
Abstract:
The present disclosure is directed to a doped silica-titania glass, DST glass, consisting essentially of 0.1 wt. % to 5 wt. % halogen, 50 ppm-wt. to 6 wt. % one or more oxides of Al, Ta and Nb, 3 wt. % to 10 wt. % TiO2 and the remainder SiO2. In an embodiment the halogen content can be in the range of 0.2 wt. % to 3 wt. % along with 50 ppm-wt. to 6 wt. % one or more oxides of Al, Ta and Nb, 3 wt. % to 10 wt. % TiO2 and the remainder SiO2. In an embodiment the DST glass has an OH concentration of less than 100 ppm. In another embodiment the OH concentration is less than 50 ppm. The DST glass has a fictive temperature Tf of less than 875° C. In an embodiment Tf is less than 825° C. In another embodiment Tf is less than 775° C.