Abstract:
A number of embodiments of cylinder head and intake port arrangements for multiple valve, internal combustion engines particularly those having three or more intake valves. The configuration promotes turbulence in the combustion chamber by inducing a tumble action even from the center intake valve seat. In addition, each of the valve seats and its associated flow passages are configured so as to provide optimum tuning for different engine speeds so as to improve the torque of the engine throughout its entire speed and load ranges and to provide good breathing efficiency throughout all engine speeds. Various porting and throttle and fuel injection systems are shown wherein siamesed intake passages are formed for at least two of the valve seats.
Abstract:
A spark ignition type reciprocating engine of a natural intake system with an ignition plug arranged to face a combustion chamber defined and delimited by a piston inserted into a cylinder so as to move in a reciprocating way, which has:a bore size of the cylinder ranging from approximately 45 mm to 67 mm;a volume of a single chamber of the cylinder ranging from approximately 110 cc to 340 cc;a ratio of a stroke of the piston to the bore size of the cylinder being larger than 1; anda compression ratio of the engine being 11 or larger.
Abstract:
A cylinder head of an internal-combustion engine has three intake valves on one side of a longitudinal center plane and has two exhaust valves on the other side. The intake valves are arranged in a circumferential direction of a cylinder of the internal-combustion engine, and a first intake valve arranged close to the edge of a combustion chamber is permanently driven by a camshaft by means of a space-saving actuating lever. The other intake valves are connected successively or isochronously according to the requirements. When the load is low, a fuel-saying load movement is achieved by the tangential inflow through the first intake valve, while, when the load requirements are higher, an optimized mixture flow rate is possible via the connected valves.
Abstract:
The invention discloses a valve driving apparatus for use of an engine including an intake valve for opening and closing an intake port, an exhaust valve for opening and closing an exhaust port, and intake and exhaust cam shafts for driving the intake and exhaust valves respectively, at least one of the intake and exhaust valves being adapted to be driven by a cam shaft located on the other side with respect thereto.
Abstract:
A valve arrangement for a cylinder head assembly employing three intake valves and two exhaust valves for each cylinder. Not all of the intake valves reciprocate along parallel axes and hydraulic adjusters are operatively associated with the camshafts and rocker arms that operate the valves from the respective camshafts. The geometric relationship of the valves is chosen so as to maintain a compact and effective combustion chamber configuration and facilitate machining of the bores in which the hydraulic adjusters are positioned.
Abstract:
A cylinder head construction for an internal combustion engine that permits a large number of valves to be employed and good bearing surface without interfering with the insertion or removal of the multiple valve springs. This is accomplished by providing a relief in one of the camshaft journals that is juxtaposed to one of the valves so that the valve spring can be easily inserted and removed. In addition, the seating area for the valve springs in the cylinder head is machined to a diameter smaller than the diameter of the valve springs and a spring seating member is interposed between this cylinder head surface and the adjacent end of the valve spring and has a diameter at least equal to that of the valve spring.
Abstract:
An intake system for with an internal combustion engine, having a plurality of intake valves for one cylinder, includes a plurality of intake ports, opening into a combustion chamber, with openings which extend toward one side of the internal combustion engine. At least one exhaust port, opening into the combustion chamber, has an opening which extends toward another side of the engine, and is formed in the cylinder head on the other side, which is opposite to the one side of the internal combustion engine. The intake ports are arranged so that the center intake port is inclined at an angle larger than an angle at which other, side intake ports are inclined, so as to direct fuel mixture flows, introduced through the side intake ports, toward an inner surface of the cylinder bore above a top of the piston at a lower dead point.
Abstract:
A cylinder head and valve train mechanism for an internal combustion engine having six valves per cylinder. There are provided four intake valves and two exhaust valves. In some embodiments, the size of the intake valves is varied because they are served by a common port so as to insure equal flow to the cylinder through all valves. In one embodiment, a single insert forms two of the valve seats. Also, two of the four valves are disposed at acute angles to both a plane containing the cylinder bore axis and a perpendicular plane passing through this axis in many embodiments. In these embodiments, the cam lobes that operate the angularly disposed valves have cam surfaces that are inclined relative to the axis of rotation of the camshaft. In some embodiments, all of the intake valves are operated by a single camshaft. In other embodiments, two camshafts operate different pairs of the intake valves. Various bearing arrangements for the camshafts are illustrated and described.
Abstract:
A cylinder head construction for a multiple valve engine that permits the use of at least three intake valves while permitting a single piece head construction and offering ease of access of the hold down fasteners for the cylinder head. The intake tappets are all slidably supported within a projection of the cylinder head with the outer tappets being positioned closer to a plane containing the cylinder bore axis so that fastener receiving bores can be formed outwardly from this point without interference from the projection.
Abstract:
Engines having cylinders of noncircular cross section wherein the cylindrical curve is generated at a preselected constant outwardly normal distance from a closed curve. The closed curve is defined as including two spaced points on a major axis of symmetry of the cylinder with two continuously curved portions extending between these points and curved outwardly from the major axis. The closed curve about which the cylinder curve is generated is preferred such that there is a continuous change of curvature without discontinuity in that curvature in the cylindrical curve. The avoidance of discontinuity in the generating curve aids in mass production considerations and cutter life. A plurality of intake and exhaust port arrangements are disclosed illustrating four intake ports and four exhaust ports on opposite sides of the major axis of symmetry of the defined cylinder. In one embodiment, the outermost of the ports are smaller and are positioned closer to the major axis of symmetry. In another, the valves are oriented such that the stems thereof point to the centerline of the associated camshaft for direct actuation.