Abstract:
A laser designator pulse detector includes an InGaAs photodetector configured to convert laser signals into electrical signals. A Read Out Integrated Circuit (ROIC) is operatively connected to the InGaAs photodetector to condition electrical signals from the InGaAs photodetector. The ROIC can be operatively connected to a peripheral device including one or more modules configured to process signals from the ROIC and provide pulse detection, decoding, and tracking. In another aspect, a laser designator pulse detector includes a two-dimensional array of photodetectors configured to convert laser signals into electrical signals. A ROTC as described above is operatively connected to the two-dimensional array of photodetectors.
Abstract:
Described herein is a luminaire controller which is mountable within a luminaire head by means of fastening areas provided in a wall forming part of an upper housing part and/or a baseplate, the upper housing part and the baseplate forming a body for the luminaire controller. A flexible light guide is provided for transmitting light from the exterior of the luminaire head to a light sensor located within the controller. A lens may be provided at one end of the light guide at the wall of the luminaire head with the other end of the light guide being adjacent the light sensor. A terminal strip and an antenna jack are provided to which respective electrical connections can be made and an antenna can be connected by means of an antenna cable.
Abstract:
In a laser-produced plasma (LPP) extreme ultraviolet (EUV) system, laser pulses are used to produce EUV light. To determine the energy of individual laser pulses, a photoelectromagnetic (PEM) detector is calibrated to a power meter using a calibration coefficient. When measuring a unitary laser beam comprising pulses of a single wavelength, the calibration coefficient is calculated based on a burst of the pulses. A combined laser beam has main pulses of a first wavelength alternating with pre-pulses pulses of a second wavelength. To calculate the energy of the main pulses in the combined laser beam, the calibration coefficient calculated for a unitary laser beam of the main pulses is used. To calculate the energy of the pre-pulses in the combined laser beam, a new calibration coefficient is calculated. When the calculated energy values drift beyond a pre-defined threshold, the calibration coefficients are recalculated.
Abstract:
In a laser-produced plasma (LPP) extreme ultraviolet (EUV) system, laser pulses are used to produce EUV light. To determine the energy of individual laser pulses, a photoelectromagnetic (PEM) detector is calibrated to a power meter using a calibration coefficient. When measuring a unitary laser beam comprising pulses of a single wavelength, the calibration coefficient is calculated based on a burst of the pulses. A combined laser beam has main pulses of a first wavelength alternating with pre-pulses pulses of a second wavelength. To calculate the energy of the main pulses in the combined laser beam, the calibration coefficient calculated for a unitary laser beam of the main pulses is used. To calculate the energy of the pre-pulses in the combined laser beam, a new calibration coefficient is calculated. When the calculated energy values drift beyond a pre-defined threshold, the calibration coefficients are recalculated.
Abstract:
In a laser-produced plasma (LPP) extreme ultraviolet (EUV) system, laser pulses are used to produce EUV light. To determine the energy of individual laser pulses, a photoelectromagnetic (PEM) detector is calibrated to a power meter using a calibration coefficient. When measuring a unitary laser beam comprising pulses of a single wavelength, the calibration coefficient is calculated based on a burst of the pulses. A combined laser beam has main pulses of a first wavelength alternating with pre-pulses pulses of a second wavelength. To calculate the energy of the main pulses in the combined laser beam, the calibration coefficient calculated for a unitary laser beam of the main pulses is used. To calculate the energy of the pre-pulses in the combined laser beam, a new calibration coefficient is calculated. When the calculated energy values drift beyond a pre-defined threshold, the calibration coefficients are recalculated.
Abstract:
A method for calibrating irradiance sensors is performed by an irradiance analysis computing device in communication with a memory. The method includes receiving an irradiance estimate representing an expected amount of irradiance, receiving a first irradiance value associated with at least one irradiance sensor, processing the irradiance estimate and the first irradiance value to generate at least one irradiance metric, and determining a condition of said irradiance sensor based at least in part on the at least one irradiance metric.
Abstract:
There is disclosed a method of testing an optical door sensor 100 having an emitter 102 for emitting a light signal 104 and a receiver 106 for detecting the light signal 104, the optical door sensor 100 having at least one sensor operating parameter and further having a baseline state in which the receiver 102 can detect a light signal from the emitter 106. The method comprises setting the optical door sensor in an offset state 204, 304, in which a sensor operating parameter is offset from a baseline setting by an offset amount, the baseline setting corresponding to the baseline state of the optical door sensor; conducting a signal test 206 with the optical door sensor in the offset state; and generating an alert 216 when the signal test result is negative for the offset state and the offset amount is less than or equal to a limit margin. The signal test comprises: emitting a light signal from the emitter 208 and determining whether the light signal is detected by the receiver 210. The signal test has a positive result if the light signal is detected by the receiver and a negative result if the light signal is not detected by the receiver
Abstract:
The present invention provides methods and systems for measuring optical power that require neither alterations to the optical fiber nor physical contact with the optical fiber, the system including an optical fiber configured to propagate an optical signal, wherein the optical fiber includes a core and at least a first cladding layer, wherein a portion of the optical signal scatters out of the optical fiber along a length of the optical fiber to form scattered fiber light; a detector system configured to receive the scattered fiber light along the length of the optical fiber and to output a detection signal based on the received scattered fiber light; and a processor configured to receive the detection signal and to determine a power value of the optical signal based on the received detection signal.
Abstract:
An apparatus for monitoring optical equipment in an optical circuit is disclosed in which the apparatus may include an optical device situated to receive an optical input signal and to reflect a portion of the energy of the received optical input signal, thereby providing a reflected input signal; a first photodiode located along a path of the reflected input signal, and operable to receive optical energy from the reflected optical input signal and from ambient optical power; a second photodiode located substantially outside the reflection path of the optical input signal; and means for calculating a magnitude of a power level of the optical input signal from values of outputs from the first and second photodiodes.
Abstract:
An optical touch device with a detecting area includes light guide components, a light source module, a light detecting component and an auxiliary light guide component. Each light guide component includes a first light emitting surface. The light guide components includes a first light guide component and a second light guide component. The auxiliary light guide component and the light detecting component are disposed between two neighboring ends of the first light guide component and the second light guide component, and the light detecting component includes a light detecting end. The auxiliary light guide component is positioned between the light detecting component and the detecting area and includes a first light incidence surface, a second light incidence surface and a second light emitting surface connected between the first light incidence surface and the second light incidence surface. The optical touch device can effectively avoid the blind zone problem.