Abstract:
A spectrum shaping scheme for chirped pulse amplification (CPA): uses a spectrum decomposing system with CTSI construction, a spectrum synthesizing system with CTSI structure that is symmetrical to the decomposing structure, and a spectrum shaping system including an aperture and a planar reflector for spectrum shaping function design. The scheme includes the following steps: firstly decomposing the spectrum of a chirped temporal pulse laser to a spectral domain; then shaping the spectrum in the spectral domain; finally synthesizing un-shiftily this shaped spectrum in the spectral domain into a temporal chirped pulse with a designed shape. The scheme has the benefit that it can be not only utilized in a general laser spectrum shaping and spectrum modulation, but also can be utilized for a high energy and ultra-high peak-power laser system in chirped pulse amplification with a large caliber and with a chirped pulse bandwidth of a few nanometers.
Abstract:
A color processing apparatus according to the present invention is a color processing apparatus that calculates spectral reflectance including a fluorescent component in a sample under a target illuminant. The color processing apparatus includes first means for inputting, for each of a plurality of waveform types, spectral radiance including an excitation wavelength region and the amount of fluorescence in the sample corresponding to the spectral radiance; second means for determining, from spectral radiance of the target illuminant including the excitation wavelength region and the input spectral radiance and amount of fluorescence, the amount of fluorescence in the sample under the target illuminant; third means for inputting spectral reflectance excluding the fluorescent component in the sample; and fourth means for determining, by using the determined amount of fluorescence in the sample under the target illuminant and the input spectral reflectance excluding the fluorescent component in the sample, spectral reflectance including the fluorescent component in the sample under the target illuminant.
Abstract:
A self-collimator concave spectral shaping device for chirped-pulse-amplification (CPA): uses a spectrum decomposing system with CTSI construction, a spectrum synthesizing system with CTSI structure that is symmetrical to the decomposing structure, and a spectrum shaping system including an aperture and a planar reflector for spectrum shaping function design. The device accomplishes the following functions: firstly decomposing the spectrum of a chirped temporal pulse laser to a spectral domain; then shaping the spectrum in the spectral domain; finally synthesizing un-shiftily this shaped spectrum in the spectral domain into a temporal chirped pulse with a designed shape. The device has the feature of requiring less optical components, compacting the structure, requiring less space, cheap in cost, and running stability, for its small size of concave reflector, and its self-collimation and its symmetrical distribution, which it can be not only utilized in a general laser spectrum shaping and spectrum modulation, but also can be utilized for a high energy and ultra-high peak-power laser system in chirped pulse amplification with a large caliber and with a chirped pulse bandwidth of a few nanometers.
Abstract:
A tunable filter including: a polarization splitter that splits input light into two linearly polarized light rays of mutually orthogonal vibration directions; a wavelength dispersion spectroscopic element that splits the two linearly polarized light rays into two spectral images having spatial spread in one direction; and a reflective spatial modulator device that modulates and reflects linearly polarized light in each wavelength region for the two spectral images independently from each other. Modulated light reflected at the reflective spatial modulator device reenters the wavelength dispersion spectroscopic element and the polarization splitter, thereby splitting and outputting the modulated light, as output light in a wavelength region modulated by the reflective spatial modulator device and output light in a wavelength region not modulated, and input light and reentered light to the polarization splitter and input light and reentered light to the wavelength dispersion spectroscopic element are parallel light fluxes.
Abstract:
A radiation generation device for generating resulting electromagnetic radiation having an adjustable spectral composition includes: a multitude of radiation elements (configured to generate a radiation element specific electromagnetic radiation, respectively, upon being activated, a first radiation element of the multitude of radiation elements being activatable independently of a second radiation element of the multitude of radiation elements; a dispersive optical element; and an optical opening; the dispersive optical element being configured to deflect the radiation element specific electromagnetic radiations, in dependence on their wavelength and on a position of the radiation element generating the respective radiation element specific electromagnetic radiation, such that a particular spectral range of each of the radiation element specific electromagnetic radiations may exit through the optical opening, so that the spectral composition of the resulting electromagnetic radiation exiting through the optical opening is adjustable by selectively activating the multitude of radiation elements.
Abstract:
A simulated sunlight generating device for generating a simulated sunlight required for evaluating performance of solar cells includes a plurality of driving units, a plurality of light-emitting units, and a plurality of adjusting units. The driving units drive the light-emitting units to emit light. The adjusting units enable the light of the light-emitting units to not only propagate along the same light route but also be added up and combined to form the simulated sunlight of an intended wavelength with ease of installation, ease of maintenance, low costs, high flexibility, and high efficiency.
Abstract:
A light radiation device that radiates light with a desired spectrum and controlled directivity is provided. A light radiation device (100) according to the present invention includes: a light source (101); an optical waveguide (107); and a spectrum modulating member (104), the optical waveguide (107) guiding incident light from the light source (101) thereinto through a plane of incidence, causing the light to be reflected by sides of the optical waveguide (107), and emitting directivity-controlled light through a plane of emission, the spectrum modulating member (104) attenuating a spectrum in a particular band of wavelengths among the directivity-controlled light, the optical waveguide (107) becoming narrower from the plane of emission toward the plane of incidence, the spectrum modulating member (104) being provided toward the plane of emission of the optical waveguide (107).
Abstract:
A color identifying display system having a lighting surface having an alterable apparent surface color, a color capture device to capture a color of an object placed within a detection area, and a processor. The lighting surface and the color capture device are coupled to the processor. The processor analyzes the captured color to determine a prominent color of the object and to control a color of the lighting surface based on the determined prominent color. The color of the lighting surface may be adjusted to match the prominent color, complement the prominent color, or be analogous to the prominent color.
Abstract:
The invention relates to a multivariate calibration which can be used when the optical system used for that method does not comprise a multi-channel detector such as a CCD sensor or a line array of photodiodes. An optical system without a multi-channel detector doesn't allow to carry out preprocessing steps. Thus there is the need to carry out these preprocessing steps in another way. It is suggested to partially replace the preprocessing step by a measurement of the optical signal, whereby the measurement comprises transmitting or reflecting the optical signal by an optical element, thereby weighing the optical signal by a spectral weighing function. The advantage of the invention is to teach how such an optical system without a bulky and expensive CCD sensor can be used to carry out a multivariate calibration and preprocessing steps.
Abstract:
A spectrum shaping scheme for chirped pulse amplification (CPA): uses a spectrum decomposing system with CTSI construction, a spectrum synthesizing system with CTSI structure that is symmetrical to the decomposing structure, and a spectrum shaping system including an aperture and a planar reflector for spectrum shaping function design. The scheme includes the following steps: firstly decomposing the spectrum of a chirped temporal pulse laser to a spectral domain; then shaping the spectrum in the spectral domain; finally synthesizing un-shiftily this shaped spectrum in the spectral domain into a temporal chirped pulse with a designed shape. The scheme has the benefit that it can be not only utilized in a general laser spectrum shaping and spectrum modulation, but also can be utilized for a high energy and ultra-high peak-power laser system in chirped pulse amplification with a large caliber and with a chirped pulse bandwidth of a few nanometers.