Abstract:
A multispectral synchronized imaging system is provided. A multispectral light source of the system comprises: blue, green and red LEDs, and one or more non-visible light sources, each being independently addressable and configured to emit, in a sequence: at least visible white light, and non-visible light in one or more given non-visible frequency ranges. The system further comprises a camera and an optical filter arranged to filter light received at the camera, by: transmitting visible light from the LEDs; filter out non-visible light from the non-visible light sources; and otherwise transmit excited light emitted by a tissue sample excited by non-visible light. Images acquired by the camera are output to a display device. A control unit synchronizes acquisition of respective images at the camera for each of blue light, green light, visible white light, and excited light received at the camera, as reflected by the tissue sample.
Abstract:
A spectrophotometer 1 comprises a control unit 45 with a warming-up determination unit 452 that determines the completion of a warming-up based on a variation amount of a detection signal in a predetermined duration when a light detector 7 detects a light from a sample chamber without loading the sample. Specifically, the warming-up determination unit 452 calculates a difference between a signal intensity of the detection signal detected by the light detector 7 at the time when the predetermined time passes and a signal intensity of the detection signal detected by the light detector 7 at a previous time and determines that a warming-up is complete when a value of the difference is less than a first threshold value. The warming-up determination unit 452 automatically determines the completion of warming-up independently from the determination by the user.
Abstract:
A multicolor fluorescence analysis device 11 is for detecting fluorescence emitted, as a result of excitation light irradiation, from a plurality of types of fluorophores included in a sample s, and is provided with an irradiation optical unit 520 for irradiating light emitted from a light source 510 onto a sample s as excitation light, a fluorescence condensation unit 530 having a fluorescence filter 531 that transmits light emitted from the sample s and transmits light of transmission wavelength bands different from the excitation wavelength bands, and a two-dimensional detector 554 that has a plurality of types of transmission filters 556 for transmitting prescribed wavelengths of light and detects the intensity of the light of the prescribed wavelength for each transmission filter 556, and the light emitted from at least two fluorophores from among the plurality of types of fluorophores is detected simultaneously and the fluorophore types are identified accordingly.
Abstract:
A laser ablation tomography system includes a specimen stage for supporting a specimen. A specimen axis is defined such that a specimen disposed generally on the axis may be imaged. A laser system is operable to produce a laser sheet in a plane intersecting the specimen axis and generally perpendicular thereto. An imaging system is operable to image the area where the laser sheet intersects the specimen axis.
Abstract:
A light radiating portion radiates light with wavelength λ1 having predetermined absorptivity for an object and light with wavelength λ2 having smaller absorptivity for the object than the wavelength λ1, to a target, so as to scan in 2-dimensional directions. A light receiving portion receives scattered lights reflected by the target based on light with wavelength λ1 and light with wavelength λ2. A measuring portion generates information used for detection of the object at the target, based on difference between the two scattered lights with wavelength λ1 and wavelength λ2 received by the light receiving portion. An output portion outputs whether or not the object is present at the target, by 2-dimensional area information, based on scanning by the light radiating portion and information generated by the measuring portion.
Abstract:
A system for spectral reading includes a plurality of LEDs, an interface, and a processor. The plurality of LEDs are disposed in a physical array. Light from the plurality of LEDs is enabled to be collimated at a Fabry-Perot etalon. The interface is configured to receive a gap calibration table and power characteristics of a plurality of LEDs. The processor is configured to determine an LED switch table. The LED switch table indicates a set of the plurality of LEDs with power above a threshold at a plurality of wavelengths. The processor is further configured to cause measurement of a sample using the gap calibration table and the LED switch table for a set of gap values and determine measurement results.
Abstract:
A simple and compact apparatus, and a method, for determining the characteristics of a number of fluids used in the truck and automotive industries including coolant, bio-diesel, gas-ethanol and diesel engine fluid (DEF). The apparatus includes a sample container providing optical paths of different lengths for making measurements on a sample. The dual path length design allows the apparatus to capture both NIR and UV spectral ranges. The qualitative and quantitative properties of the fluid under test are compared to test results under normal conditions or to the properties of unused fluid. Two light sources are used within a spectrometer with each source being associated with a different optical path length.
Abstract:
Provided are methods and systems for concurrent imaging at multiple wavelengths. In one aspect, an imaging device includes at least one objective lens configured to receive light backscattered by an object, a plurality of pixel array photo-sensors, a plurality of bandpass filters covering respective photo-sensors, where each bandpass filter is configured to allow a different respective spectral band to pass through the filter, and a beam steering assembly in optical communication with the at least one objective lens and the photo-sensors. The beam steering assembly directs light received by at least one objective lens from the tissue of a subject to at least one pixel array photo-sensor in the plurality of pixel array photo-sensors.
Abstract:
In a double-beam photometer comprising a light source providing a light beam, detector means, a sample area, optical means for guiding the light beam as a measuring light beam through the sample area onto the detector means, means for guiding the same light beam as a reference light beam onto the detector means while avoiding the sample area, and chopper means disposed in a splitting location for splitting the light beam into the measuring light beam, which are combined into one path of rays in a recombination location, after the measuring light beam has passed through the sample area, with the splitting location and the recombination location being spatially close to each other. The chopper means has a single chopper which simultaneously effects the splitting and the combination of the measuring and reference light beams.
Abstract:
The apparatus is for use with a surface and includes a light source, a body and a light production apparatus. The light source includes a plurality of elements for generating light. The body: has a planar base for placement in use on the surface, the base being orientated perpendicular to the receiving axis; defines a sampling aperture communicating with the base and through which the receiving axis passes; encompasses the elements; and is adapted, in combination with the light source and when the sampling aperture is blocked to ambient light, to shield the sensor from ambient light. The light production apparatus is for converting the light of the elements through internal reflection, absorption and filtration into light collimated to impinge upon the base, at the intersection of the base and the receiving axis, at a predetermined angle to the receiving axis.