Abstract:
A spectroscopic measurement device includes: a dividing optical system for dividing a measurement beam emitted from each of a plurality of measurement points located within a measurement area of an object to be measured, into a first measurement beam and a second measurement beam; an imaging optical system; an optical path length difference providing means; a detector including a plurality of pixels; a processor for acquiring an interferogram of a measurement point of the object to be measured; a conjugate plane imaging optical system located between the object to be measured and the dividing optical system; and a periodicity providing means located on the conjugate plane.
Abstract:
A spectroscopic measurement device includes a dark filter that is arranged on an optical path between an imaging optical system and a light detection unit and includes a plurality of regions having different transmittances, the filter being configured such that a fixed reflected measurement light and a movable reflected measurement light that are guided to a same point by the imaging optical system and form interference light are transmitted through a same region; and an arithmetic processing unit that obtains an interferogram of the measurement light at a transmittance corresponding to each of two or more regions from a detection signal of each pixel of a light detection unit when a movable reflection unit is moved, and obtains a spectrum of the measurement light based on the interferogram.
Abstract:
Various systems and methods for performing optical analysis downhole with an interferogram (a light beam having frequency components with a time variation that identifies those frequency components. The interferogram is produced by introducing an interferometer into the light path, with the two arms of the interferometer having a propagation time difference that varies as a function of time. Before or after the interferometer, the light encounters a material to be analyzed, such as a fluid sample from the formation, a borehole fluid sample, a core sample, or a portion of the borehole wall. The spectral characteristics of the material are imprinted on the light beam and can be readily analyzed by processing electronics that perform a Fourier Transform to obtain the spectrum or that enable a comparison with one or more templates. An interferometer designed to perform well in the hostile environments downhole is expected to enable laboratory-quality measurements.
Abstract:
A miniaturized Holographic Fourier transform imaging spectrometer HFTIS, made from simple all-reflective components and with no moving parts, is provided. This HFTIS includes an all-reflective two beam interferometer, which provides two interfering beams; a two-dimensional detector array to detect the interference pattern created by the beams; a computing machine for correcting the distortions in the pattern and calculating the spectrum from the corrected interferogram. The same principle can be used to build spot spectrometers, line-scan imaging spectrometers (also called array spectrometers or line-scan hyperspectral cameras) as well as two-dimensional instantaneous imaging spectrometers (also called staring hyperspectral cameras). In all variants of HFTIS that can be built using this invention, the wave-signal collecting element can also be built of all-reflective components. Digital correction can be utilized to straighten the interference fringes and to compensate for the impact of used lenses and other refractive components, to produce correct spectra after Fourier Transformation.
Abstract:
A spectrometer has a multi-input aperture for admitting an input wavefront and an array of multiple waveguide structures terminating at the multi-input aperture. The input wavefront is incident on each of the waveguide structures, which provide a dispersive function for the input wavefront. Interferometers are formed by elements of the waveguide structures. The interferometers have different optical path length differences (OPDs). The interferometers provide a wavelength responsive output for spatially extended light sources. The output of the interferometers is detected with a detector array. The spectrometer has an improved etendue, and in some embodiments very high resolution.
Abstract:
An interferometer is disclosed, such as may be incorporated into a hand-held spectrometer. The interferometer comprises enclosed path optics and a detector, the enclosed path optics comprise at least two reflecting elements and a beamsplitter, the beamsplitter is arranged to divide an input beam into first and second beams. The enclosed path optics are arranged to direct the first and second beams in opposite directions around paths enclosing an area and to output the first and second beams towards the detector. The enclosed path optics also focus the first and second beams onto the detector. The detector is arranged to detect a pattern produced by interference of the first and second beams. In a preferred embodiment the two reflecting elements are a pair of concave mirrors, and the enclosed path optics enclose a triangular area. The use of concave mirrors for both reflection and focussing provides the interferometer with compactness.
Abstract:
A transform spectrometer measurement apparatus and method for a planar waveguide circuit (PLC). The spectrometer typically includes an input optical signal waveguide carrying an input optical signal; a plurality of couplers, each connected to the input optical signal waveguide, and each including a coupler output for carrying a coupled optical signal related to the input optical signal; and an array of interleaved, waveguide Mach-Zehnder interferometers (MZI), each having at least one input MZI waveguide, each MZI input waveguide receiving a coupled optical signal from a respective coupler output. A phase shifting circuit is applied to at least one arm of the MZIs to induce an active phase shift on the arm to thereby measure phase error in the MZIs. Light output from the MZIs is measured under intrinsic phase error conditions and after an active phase shift by the phase shifting circuit.
Abstract:
An optical broadband micro-spectrometer containing an input optical assembly, a group of slab waveguide spatial heterodyne spectrometer (SHS) integrated circuits (ICs), a detection module and a processor for multi-line detection. The input optical assembly applies an input light signal uniformly with respect to brightness and frequency to the apertures of the waveguides and may project a pupil image onto the SHS input face and may be a scanner. Each slab waveguide spatial heterodyne spectrometer (SHS) integrated circuit (IC) contains at least one slab waveguide SHS IC. The detection module bonds directly to the slab waveguide output apertures. Each slab waveguide SHS IC may contain one or more slab waveguide SHS.
Abstract:
Disclosed are compact optical interferometer array, miniature optical interferometer array, and miniature optical interferometer. The interferometer arrays contain a spatial phase modulator array and a detector array. They are used for conducting multiple measurements. The miniature interferometer has only one component—a spatial phase modulator. Without passing through any focus lens, beam portions coming out of the modulator spread and merge together by themselves. Size of the miniature interferometer can reach subwavelength or even nanoscale. The interferometer array and miniature interferometer find applications in miniature spectrometer, color filter, display, adjustable subwavelength grating, etc.
Abstract:
An interferometer has a first reflective surface having a nominal orientation; a second reflective surface having a nominal orientation orthogonal to the nominal orientation of the first reflective surface; a retroreflector facing the first reflective surface; a double polarizing beam splitter (DPBS) between the first reflective surface and the retroreflector; and a respective quarter-wave plate between the DPBS and each of the reflective surfaces. The DPBS has first and second beam-splitting surfaces each having a nominal orientation with respect to the first reflective surface. At least part of at least one of the first reflective surface, the second reflective surface and the beam-splitting surfaces is effectively tilted relative to the respective nominal orientation of such surface, and constitutes a respective tilted surface.