Abstract:
A method for determining the optimal colorant thicknesses for integral CIE color-matching filters is provided. According to a computational study, a four band filter of the present invention provides a best approximation to the CIE XYZ color-matching functions with the least cost.
Abstract:
An image processing system is used for dentistry. Upon creating a false tooth of a patient (59), a plurality of illuminating light of LEDs with different wavelengths emit light and a photographing apparatus (1A) photographs a tooth portion of the patient (59), thereby obtaining image data. The image data is sent to a dentistry filing system (2A) serving as a processing apparatus, and color reproducing data is obtained by calculation. The color reproducing data is sent to a dentistry factory (55) via a public line. Data is searched from a database (56) for calculating a ceramic compounding ratio, compound data of the ceramic false tooth is obtained, matching the color of the tooth portion of the patient (59), and the false tooth approximate to the tooth color of the patient (59) is created.
Abstract:
In one embodiment, light having a first spectrum is filtered from a mixed light. Light having a second spectrum, different from the first spectrum, is also filtered from the mixed light. An intensity of the light having the first spectrum, and an intensity of the light having the second spectrum, are then sensed. From the sensed intensities of the lights having the first and second spectrums, an intensity of light having a third spectrum is estimated.
Abstract:
The present invention features a fiber optic imaging system for generating a customized spectral response comprising (a) an optional optical source for generating optical energy, (b) an optical system for focusing multi spectral optical energy to form a focal surface; (b) a fiber optic element for conveying the optical energy, wherein the fiber optic element has an input end optically coupled to the focal surface to receive the optical energy and an output end to transmit the conveyed optical energy; and (c) a spectral filter optically coupled to at least one of the input and output ends of the fiber optic element, wherein the spectral filter has a filter passband configured to provide the fiber optic element with a pre-determined wavelength transmittance capacity, such that only pre-determined wavelengths of the optical energy are transmitted through the output end, thus achieving a customized spectral response. The fiber optic imaging system may further comprise an imaging array optically coupled to the output end of the fiber optic element and configured to gather the transmitted optical energy and to convert it into a data signal corresponding to an image based on the customized spectral response. An example of this type of configuration is a spectrometer.
Abstract:
An image sensing system for a vehicle includes an imaging sensor comprising a two-dimensional array of light sensing photosensor elements, preferably formed on a semiconductor substrate, and a logic and control circuit comprising an image processor for processing image data derived from the imaging sensor. The logic and control circuit generates at least one control output for controlling at least one light of the vehicle. The imaging sensor is disposed at an interior portion of the vehicle proximate the windshield of the vehicle and has a forward field of view to the exterior of the vehicle through an area of the windshield. The at least one control output preferably controls at least one of (i) a beam state of a headlight; (ii) a beam aim of a headlight; (iii) a beam pattern of a headlight and (iv) a beam intensity of a headlight.
Abstract:
A light source control apparatus includes a light quantity detection unit that respectively detects light quantities of three color light emitted from a light source part, a light quantity ratio calculation unit that calculates light quantity ratios of reflection light detected by the light quantity detection unit, a determination unit that, when the light quantity detection unit detects light quantities of respective reference of the lights emitted from the light source part, determines whether or not the light quantity ratios calculated by the light quantity ratio calculation unit are within a predetermined range, and a light quantity ratio adjustment unit that respectively adjusts the light quantity ratios of the lights emitted from the light source part on the basis of the light quantity of the reference light corresponding to green emitted from the light source part, in correspondence with the result of determination by the determination unit.
Abstract:
A Micro-Electro-Mechanical System (MEMS) based Fabry-Perot array may be used as a spectral filter to light sensing array, such as a CCD or CMOS photodetector. Applying different voltages to the electrodes of individual Fabry-Perot cells within the array allows a gradient in the Fabry-Perot air gap across the Fabry-Perot array. In this manner the MEMS Fabry-Perot array serves as a spectral filter of light passing through the Fabry-Perot array to the photodetector array. Embodiments of the disclosed sensor, used with LEDs that emit light outside the photosensitivity range of a photoreceptor belt, may be used to measure spectral information from toned patches placed upon a photoreceptor belt within a marking system. Other embodiments of the disclosed sensor, used with LEDs that emit light of any wavelength, may be used to measure spectral information from toned patches placed by a marking system upon a non-photosensitive output substrate, such as an intermediate belt or paper.
Abstract:
To control chroma and brightness in a backlight module, a plurality of reference values of a plurality of monochromatic light beams are provided, and a brightness reference value is provided for the light formed of the monochromatic light beams. Then, a plurality of first light signals of the monochromatic light beams, and a second light signal of the light formed of the monochromatic light beams are sensed and compared with the reference values and the brightness reference value, respectively. Finally, the monochromatic light beams outputted by the plurality of LEDs is calibrated according to a comparison result of the plurality of first light signals with the plurality of reference values and a comparison result of the second light signal with the brightness reference value.
Abstract:
Disclosed is an apparatus and method for a compact, rugged, and inexpensive spectrometer that will make possible a range of new applications for optical spectroscopy including point-of-care medical devices, personal monitors, and ubiquitous environmental sensing. Embodiments of the disclosure include silicon photodetectors where incident light passes through a layer of an inexpensive, absorbing thin film. In one embodiment, one or more photodetectors may be used where a series of absorbing thin film layers are passed over the photodetectors. In another embodiment, an absorbing thin film layer is placed over one or more photodetectors where the absorptivity of the thin film layer is different for each photodetector.
Abstract:
The present invention provides an information processing device, having a power generating element for converting light into power, for performing processing responsive to an environment in which a wavelength of illuminating light changes. The device includes a plurality of power generating elements whose power generating efficiencies are deflected with respect to light having different predetermined wavelengths, respectively; a plurality of voltage detecting sections for detecting voltages of power generated by the plurality of power generating elements, respectively; a determining section for determining any of the plurality of power generating elements, whose power generating efficiency is different relative to the others on the basis of the respective detected voltages of the plurality of power generating elements, to determine a surrounding environment on the basis of a determination result; and a processing section for performing processing responsive to the determined surrounding environment.